Close menu Resources for... William & Mary
W&M menu close William & Mary

September 13, 2019

Summary

{{https://www.wm.edu/as/mathematics/faculty-directory/li_ck.php, Chi-Kwong Li}} (William & Mary) Error correlation schemes for fully correlated quantum channels protecting both quantum and classical information

Full Description
Abstract: We study efficient quantum error correction schemes for the fully correlated channel on an n-qubit system with error operators that assume the form $\sigma_x^{\otimes n}$, $\sigma_y^{\otimes n}$, $\sigma_z^{\otimes n}$. In particular, when 2k+1 is odd, we have a quantum error correction scheme using one arbitrary qubit $\sigma$ to protect the data state $\rho$ in the 2k-qubit system. When n=2k+2 is even, we have a hybrid quantum error correction scheme that protects a 2k-qubit state $\rho$ and 2-classical bits. The scheme was implemented using Matlab, Mathematica and the IBM's quantum computing framework qiskit. Note: Problems and results will be described in terms of elementary matrix theory. No quantum mechanics background is needed. Co-authors: Seth Lyles, and Yiu-Tung Poon