a2 United States Patent

Moran et al.

US010083106B2

US 10,083,106 B2
Sep. 25, 2018

(10) Patent No.:
45) Date of Patent:

(54) COMPUTER AIDED BUG REPORTING
SYSTEM FOR GUI APPLICATIONS

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

Applicant: College of William and Mary,

Inventors: Kevin P. Moran, Williamsburg, VA
(US); Mario Linares Vasquez,
Williamsburg, VA (US); Carlos E.
Bernal-Cardenas, Williamsburg, VA
(US); Denys Poshyvanyk,
Williamsburg, VA (US)

Assignee: College of William & Mary,
Williamsburg, VA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 138 days.

Appl. No.: 15/149,586

Filed: May 9, 2016

Prior Publication Data

US 2017/0322866 Al Nov. 9, 2017

Int. C1.

GO6F 9/44 (2018.01)

GO6F 11/36 (2006.01)

U.S. CL

CPC i GO6F 11/362 (2013.01)

Field of Classification Search

CPC e GOG6F 11/36-11/3668

USPC e 717/124-135

Williamsburg, VA (US)

See application file for complete search history.

10
20 \
Analysis Processor
Source Static
Code Exdraction
{
200 22
Execution "
Dynamic
of Source "
Code E""“‘("
/
24 26

(56) References Cited

U.S. PATENT DOCUMENTS

2004/0255270 Al* 12/2004 McGlinchey GOG6F 9/4446
717/109

2010/0229112 A1* 9/2010 Ergan GOG6F 3/04895
715/764

2013/0268810 Al* 10/2013 Prasad GO6F 11/0751
714/48

2014/0237304 Al* 82014 Lai ..ccooovvnnnene. GO6F 11/0742
714/57

2015/0193329 Al* 7/2015 Strode GO6F 11/0709
717/125

2016/0162475 Al* 6/2016 Bondarenko GO6F 11/3636
704/9

2016/0371169 Al1* 12/2016 Guo GO6F 11/3612
2017/0277625 Al* 9/2017 Shtuchkin GO6F 11/3688

* cited by examiner

Primary Examiner — Jue Louie
(74) Attorney, Agent, or Firm — Jason P. McDevitt

(57) ABSTRACT

A computer aided bug reporting system for GUI-based apps
extracts and stores static and dynamic data from an app’s
source code. Using the extracted/stored data, a sequence of
prompts is generated on a bug reporter’s display device. The
prompts are ordered in accordance with one of the app’s
execution paths associated with an encountered bug wherein
each of the prompts is associated with one of the path’s
execution steps. Each prompt presents the GUI components
and attributes of the GUI components associated with the
one of the execution steps wherein selected ones of the GUI
components and selected ones of the attributes of the GUI
components are defined. The selected ones of the GUI
components and the selected ones of the attributes of the
GUI components for the execution steps associated with the
one of the execution paths are presented for review by a
software developer.

3 Claims, 5 Drawing Sheets

40
Report Generation Processor
30 Activate Report 42
Generator
. Prompt

Database Generator 46

Tus {

Report
Generator
100]
Internet
50 Bug Reporter| Developer
Display and Display and [™. g0
Input Devics Input Device

US 10,083,106 B2

Sheet 1 of 5

Sep. 25,2018

U.S. Patent

09~

I “DIA

a0IAe(Indy| 821A8(] Induy|
pue Aejdsiq pue Aeidsiq
Jadojanaq Jeyoday bng[— 0%
Jous|
— "1
i
Jojelauas) AN
110 d o ey \/
v $J
o Jojesauss) oseqeleq
1dwiold
r \\-!I,/
lojesauas) dl\
— | poday sjeaoy
T Hoaay ! 0€
J0SS80014 UOlRIaUSS) Hoday

(

oy

97 144
9po)
topoex3 1, | 80In0g JO
alweuiq
uonnoex3
7 00¢
/ |
uopoex3 | _ 8poY
anes 80In0S
108832014 SisAjeuy
/ 0C
01

U.S. Patent

Sep. 25,2018 Sheet 2 of 5

US 10,083,106 B2

Reported By: | Reporter Name

Device: [Nexus 7 f
Orientation: | Portrait 5]
Title for the bug report:

The GoTo page feature does not work
properly.

Brief description of the bug you
encountered:

What should happen: Tapping the GoTo
button brings you fo corresponding page

What happens instead: Stayed on same

page.
-- Select Action/Event -
Clicked
Long-Clicked
Swiped
Typed

FIG. 3

FIG. 2

-- Select GUI Component --
Button "Ok" located at center

Button "Restore" located at top right

Button "Search” located at center
Search

FIG. 4

U.S. Patent

Sep. 25,2018 Sheet 3 of 5

US 10,083,106 B2

~—54

| ——54

54

FIG. 5
l I
Top Top Top
Left { Center : Right
___r_____r___
| |
Center [I Center
Left | Center | Right
| |
L S
Bottom Bottom Bottom
Left | Center | Right

FIG. 6

U.S. Patent Sep. 25, 2018 Sheet 4 of 5 US 10,083,106 B2

I Is steps_history = 0? I—Noe{ Is steps_history >= 27 |
/

Yes Yes No
Display Is Is steps_history = 1
components steps_history-1 and is
for the app's verified? steps_history-1
main | confirmed?
activity. T
/Yes Nﬁo Ygs No\
Display Is Display components Display components
components from steps_history-2 | | from previous activity from main activity
previous activity verified? and possible and two stages of
and possible / \ transition activities. transition activities.
transition activities.
Yes N\
Display Display all
components from possible app
the activity in components.
steps_history-2
and two stages of
transition activities.

FIG.7

U.S. Patent Sep. 25, 2018 Sheet 5 of 5 US 10,083,106 B2

”?O
72—~ [_—_-_—EPO—HT% —————]
i Device Used Short Description of Bug |

Execution Steps Leading to Bug

Step 1

Natural language description
- Component used

- Location of component

- Source code location

- Screen shot of component

74—

Step N:

Natural language description
- Component used

- Location of component

- Source code location

- Screen shot of component

___*
l
|
|
l
l
|
l
l
|
|
l

T |
|
|

]

-l

76

|
|
L

US 10,083,106 B2

1
COMPUTER AIDED BUG REPORTING
SYSTEM FOR GUI APPLICATIONS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH AND
DEVELOPMENT

This invention was made with government support under
Grant Numbers CCF-1218129 and CCF-1253837 awarded
by the National Science Foundation. The government has
certain rights in the invention.

FIELD OF INVENTION

The field of the invention relates generally to computer
aided systems and methods, and more particularly to a
computer aided bug reporting system and method for GUI-
based applications.

BACKGROUND OF THE INVENTION

Smartphones and mobile computing have skyrocketed in
popularity in recent years, and adoption has reached near-
ubiquitous levels. An increased demand for high-quality and
robust mobile applications is being driven by a growing user
base that performs an increasing number of computing tasks
on “smart” devices. Due to this demand, the complexity of
mobile applications has been increasing, making develop-
ment and maintenance challenging. The intense competition
present in mobile application (or “app” as it is also known)
marketplaces means that if an app is not performing as
expected due to bugs or lack of desired features, users are
less likely to use the app again and will abandon it for
another one with similar functionality.

Software maintenance activities are known to be gener-
ally expensive and challenging. One of the most important
maintenance tasks is bug report resolution. However, current
bug tracking systems rely mostly on unstructured natural
language bug descriptions. These descriptions can be aug-
mented with files uploaded by the reporters (e.g., screen
shots). As an important component of bug reports, repro-
duction steps are expected to be reported in a structured and
descriptive way, but the quality of this description mostly
depends on the reporter’s experience and attitude towards
providing enough information. Therefore, the reporting pro-
cess can be cumbersome, and the additional effort to create
detailed reports means that many users are unlikely to
enhance their reports with extra information.

Consequently, bug reports created with traditional issue
tracking systems are currently unstructured and widely vary
depending on the reporter’s capability and attention to
detail, and many software developers believe that bug
reports are lacking in information. Further, the information
most useful to developers is often the most difficult for
reporters to provide and the lack of this information is a
major reason behind non-reproducible bug reports. Diffi-
culty providing such information, especially reproduction
steps, is compounded in the context of mobile applications
due to their complex event-driven and “graphical user
interface” (or GUI as used hereinafter) based nature. Fur-
thermore, many bug reports are created from textual descrip-
tions of problems in user reviews. As would be expected,
only a reduced set of user reviews can be considered useful
and/or informative since reviews do not generally refer to
details of the app implementation.

The above issues point to a prominent problem for bug
tracking systems in general. That is, there is a lexical gap

20

30

40

45

50

55

65

2

that exists between bug reporters (e.g., testers, beta users)
and developers. Reporters typically only have functional
knowledge of an app even if they have development expe-
rience themselves, whereas the developers working on an
app tend to have intimate code level knowledge. In fact,
there is a difference between the way experts and non-
experts write bug reports as measured by textual similarity
metrics. When a developer reads and attempts to compre-
hend (or reproduce) a bug report, the developer has to bridge
this gap by reasoning about the code level problems from the
high-level functional description in the bug report. If the
lexical gap is too wide, the developer may not be able to
reproduce and/or subsequently resolve the bug report.

BRIEF SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to
provide a method and system that improves the reporting of
bugs in GUI-based software applications.

In accordance with the present invention, a computer
aided bug reporting system for GUI-based applications
includes a processor configured to extract first data indica-
tive of GUI components and attributes of the GUI compo-
nents from source code for a GUI-based application having
execution paths that generate a plurality of screen displays
according to user interactions during run-time execution of
the source code. Each screen display uses the GUI compo-
nents defined by the source code. The first data is stored in
a database. The source code is executed in a run-time
environment through its execution paths according to auto-
matically-generated user inputs. Each execution path is
defined by execution steps wherein each execution step
generates a run-time screen display using at least one of the
GUI components. Second data indicative of each run-time
screen display is also stored in the database. Using the first
data and second data, a sequence of prompts is generated on
a bug reporter’s display device. The prompts are ordered in
accordance with one of the execution paths associated with
an encountered bug wherein each of the prompts is associ-
ated with one of the execution steps. Each prompt presents
the GUI components and attributes of the GUI components
associated with the one of the execution steps wherein
selected ones of the GUI components and selected ones of
the attributes of the GUI components are defined. The
selected ones of the GUI components and the selected ones
of the attributes of the GUI components for the execution
steps associated with the one of the execution paths are
displayed on an electronic image for review by a software
developer.

BRIEF DESCRIPTION OF THE DRAWINGS

The summary above, and the following detailed descrip-
tion, will be better understood in view of the drawings that
depict details of preferred embodiments.

FIG. 1 is a schematic view of a computer aided bug
reporting system for GUI-based applications in accordance
with an embodiment of the present invention;

FIG. 2 is a screen shot of a bug reporter’s display showing
initial prompts at the start of a bug reporting process in
accordance with an embodiment of the present invention;

FIG. 3 is a screen shot of a bug reporter’s display showing
a drop down list of possible GUI component actions that a
user can perform at a particular execution step in an app’s
execution;

US 10,083,106 B2

3

FIG. 4 is a screen shot of a bug reporter’s display showing
a drop down list corresponding to the GUI component
associated with the possible action at the execution step;

FIG. 5 is a screen shot of the bug reporter’s display
depicting an augmented mobile device screen highlighting
the screen location of the GUI component associated with
the possible action at the execution step;

FIG. 6 is an enumeration of the relative locations in which
GUI components can appear on a given application screen;

FIG. 7 is a diagram of a decision tree used by the system’s
prompt generator when predicting prompts to be displayed
on a bug reporter’s display; and

FIG. 8 is a generalized display layout of a bug report
generated in accordance with an embodiment of the present
invention.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention addresses the problem of making
bug reports more useful for developers. In general, the
present invention is a computer aided paradigm that pro-
vides a user/reporter with a standardized bug reporting tool
and provides a developer with a logical and structured report
of the user/reporter’s execution steps taken to cause the
occurrence of a bug. Given the enormity of GUI-based
software or “apps” being developed, the present invention
will be described for its use with GUI-based apps. Further
and by way of an illustrative example, the present invention
will be described for apps developed for the Android plat-
form. However, it is to be understood that the present
invention could also be adapted for use with other software
platforms without departing from the scope of the present
invention.

The computer aided bug reporting method and system
uses a novel analyze and report generation paradigm to
enable a user/reporter to provide a developer with actionable
information about a software bug. In general, the method
and system are configured to provide bug reporting func-
tionality for one version of a software code base. That is, the
analyze portion of the paradigm must be performed for each
new version of the software code prior to the operation of the
report generation portion of the paradigm. Accordingly, the
present invention is a particularly useful tool for testers and
beta users of a software version that test an app prior to its
release to the general public. However, the present invention
can be used by any user at any time during the life of an app.

The analyze and report generation paradigm is defined by
two workflow phases, i.e., the analysis phase and the report
generation phase. In the analysis phase, the present inven-
tion collects data related to the GUI components (or simply
“components” as also referred to herein) and event flow of
an app through a combination of static analysis and dynamic
analysis of the app. Then, in the report generation phase, the
collected data is used to first walk a user/reporter (who
encountered the bug) through the steps that the app executed
on the way to the production of the bug. The user/reporter’s
executed steps, to include GUI component selections/defi-
nitions up to the point the bug was encountered, are then
assembled into a stepwise report for review by the app’s
developer(s). At each execution step of the report, the
reporter’s executed steps and GUI component selections can
be used to complete a natural language template in order to
provide the developer(s) with a natural language description
of each execution step and the GUI component information
associated therewith.

20

25

35

40

45

65

4

Referring now to the drawings and more particularly to
FIG. 1, a computer aided bug reporting system for GUI-
based applications in accordance with an embodiment of the
present invention is shown and is referenced generally by
numeral 10. In the illustrated embodiment, system 10
includes an analysis processor 20, a database 30, and a report
generation processor 40. It is to be understood that proces-
sors 20 and 40 could be realized by a single processor or by
more than two processors without departing from the scope
of'the present invention. Similarly, it is to be understood that
database 30 can be realized by a single database or multiple
databases without departing from the scope of the present
invention. As will be explained later herein, report genera-
tion processor 40 interfaces with, for example, a bug
reporter display and input device 50 (e.g., a desktop system,
a laptop computer, a mobile computing device, etc.) and a
developer display and input device 60. Device 50 is typically
accessible to a tester or beta user who will be making a bug
report, and device 60 is typically accessible to the app’s
developer(s). Interfacing between system 10 and devices
50/60 can occur over a wired network or over a wireless
transmission medium that includes internet 100. That is,
system 10 could be accessed online by remotely-located
users/subscribers thereof, e.g., device 50 and device 60 are
different devices located at different locations.

Analysis processor 20 is used to collect all of the data that
is required for use by report generation processor 40. The
collected data is stored in and accessed from database 30.
Analysis processor 20 is supplied with an app’s source code
200 to perform both static extraction of data and dynamic
extraction of data. In general, a static extraction 22 acts on
source code 200 to extract all of the GUI components and
associated attributes defined in source code 200. More
specifically, for each GUI component in source code 200,
static extraction 22 extracts the following:

possible actions on the GUI component;

the type of GUI component (e.g., button, spinner, etc.);

activities the GUI component is contained within; and

class files where the GUI component is instantiated.
As a result, static extraction 22 defines the universe of
possible GUI components within the domain of an app, and
establishes traceability links connecting the GUI compo-
nents that users/testers operate upon to specify information
such as the class or activity the components are located
within.

Static extraction 22 can include several processing steps
to extract the above-identified information. Such processing
steps can include the following using commercially-avail-
able or open-source tools:

decompilation using, for example, “dex2jar’available

online at code.google.ccom and jd-cmd”available
online at github.com;
source file-to-XMI.-based representation using,
example, “sr-cML.”available online at srcml.org;

extraction of resource files from the app’s APK using, for
example, “apk tool”available online at code.google-
.com;

extraction of IDs and types of GUI components from the
xml files located in the app’s resource folders (i.e.,
/res/layout and /res/menu of the decompiled app or src);
and

parsing and linking the GUI component information to

extracted app source code files using the srcML repre-
sentation of the source code.
Data indicative of the statically-extracted information is
stored in database 30.

for

US 10,083,106 B2

5

Dynamic extraction of data requires an execution 24 of
source code 200 through the code’s tree of execution paths,
each of which is defined by a series of execution steps.
Execution 24 can occur on any run-time environment to
include a hardware device, an emulator, etc., the choice of
which is not a limitation of the present invention. As is the
case with any GUI-based app, execution of the app’s source
code along its execution paths generates run-time screen
display data at each execution step of an execution path.
That is, execution 24 automatically generates user interac-
tions at each execution step of an execution path. Each
run-time screen that would be generated during such inter-
actions includes the use of GUI components. A dynamic
extraction 26 extracts dynamic contextual information such
as the location of the GUI component on the screen display
to enhance the data stored in database 30 with both run-time
GUI and application event-flow information. The goal of
dynamic extraction 26 is to explore an app in a systematic
manner. Extracted run-time information related to the GUI
components during execution can include the following:

the text associated with different GUI components (e.g.,

the “Send” text on a button to send an email message);

whether the GUI component triggers a transition to a

different activity;

the action performed on the GUI component during

systematic execution;

full screen-shots before and after each action is per-

formed;

the location of the GUI component object on the test

device’s screen;

the current activity and window of each step;

screen shots of the specific GUI component; and

the object index of the GUI component (to allow for

differentiation between different instantiations of the
same GUI component on one screen).

For apps designed to run on an Android platform,
dynamic extraction 26 can use the “UlAutomator” app
framework included in the Android SDK available online at
developer.android.com. The UlAutomator framework pro-
vides for the capture of pop-up menus that exist within
menus, internal windows, and onscreen keyboards. Extrac-
tion 26 can also include a systematic depth-first search
(DFS) algorithm for application traversal that performs click
events on all the clickable components in the GUI hierarchy
reachable using the DFS heuristic.

Before each execution step, dynamic extraction 26 calls
Ul Automator subroutines to extract the contextual informa-
tion outlined above regarding each currently displayed GUI
component. The action associated with each GUI compo-
nent is then executed in a depth-first manner on the current
screen. In the DFS algorithm, if a link is clicked that would
normally transition to a screen in an external activity (e.g.,
clicking a web link that would launch a web browser app),
a “Back” command is executed in order to stay within the
current app. If the DFS exploration exits the app to the home
screen of the device/emulator for any reason, the app is
re-launched and continues the GUI traversal. During the
DFS exploration, extraction 26 captures every activity tran-
sition that occurs after each action is performed (e.g.,
whether or not a new activity is started/resumed after an
action to launch a menu). This provides for the building of
a model of the app execution that can be used later to help
track a reporter’s relative position in the app when they are
using the system to record the steps to reproduce a bug.

When an app’s user/tester encounters a software bug, they
generally have traversed a number of execution steps along
an execution path of the app. An accurate recording of the

10

15

20

25

30

35

40

45

50

55

60

65

6

execution steps is critical to a developer’s ability to repro-
duce and ultimately fix the app’s source code. Towards this
end, report generation processor 40 provides the bug
reporter with a natural language input that is used to define
a high-level overview of the bug, and provides the reporter
with a sequence of prompts that guide the reporter through
the execution steps leading to the bug.

During the report generation phase, system 10 aids the
bug reporter in constructing the steps needed to recreate a
bug by making suggestions based on the potential GUI state
reached by the declared execution steps. That is, for each
execution step, the present invention verifies that the sug-
gestion made to the bug reporter is correct by presenting the
bug reporter with contextually relevant screen shots corre-
sponding to the current action the reporter wants to describe.

The bug reporter initiates the bug report generation pro-
cess by sending a request to activate report generation 42.
For example, in the illustrated embodiment, such a request
is made at device 50 and transmitted to processor 40 via
internet 100. Request to activate report generation 42 can
serve as a point of initial interaction with the bug reporter to
collect some identifying information (e.g., name of bug
reporter, device used to run the app, etc.) and a brief textual
description of the bug in question. Next, a prompt generator
44 generates a sequence of prompts for display on device 50.
The sequence of prompts traverses an order in accordance
with the execution path that led to the occurrence of the bug.
More specifically, the prompts are a sequence of drop down
menus and/or fill-in boxes that identify the GUI components
and action options for the bug reporter in a stepwise manner
so that the reporter can define the execution steps along the
execution path leading to the occurrence of the bug. Prompt
generator 44 generates the prompts using the statically and
dynamically extracted data stored in database 30. Prompt
generator 44 typically begins from a “cold start” of the app
(i.e., the first window and screen that appear after the app is
launched). However, the present invention could also be
started from any point along any execution path without
departing from the scope of the present invention.

A series of exemplary processes implements by prompt
generator 44 will now be described. However, it is to be
understood that the prompts generated by prompt generator
44 will be difterent for every app and are dependent upon the
execution path leading to the bug. By way of an illustrative
example, prompt generator 44 will be explained for a simple
example. Referring now to FIG. 2, a screen shot 52 at device
50 is shown for a Document Viewer bug. According to the
various fields in FIG. 2, the reporter would fill in the
appropriate information in the “Reported by”, “Device”,
screen “Orientation”, “Title for the bug report”, and “Brief
description of the bug you encountered” fields. Non-limiting
examples of information are shown in FIG. 2

To help the bug reporter in entering reproduction steps,
each execution step in the reproduction process is modeled
as an {action, component} tuple corresponding to the action
the reporter wants to describe at each step (e.g., tap, long-
tap, swipe, etc.) and the GUI component in the app with
which they interacted (e.g., “Name” text view, “OK” button,
“Days” spinner). Since reporters are generally aware of the
actions and GUI components with which they interact, the
present invention provides an intuitive manner for them to
construct reproduction steps. Prompt generator 44 allocates
suggestions to drop down lists based on a decision tree
taking into account a reporter’s position in the app’s execu-
tion path beginning from a cold start of the app.

FIG. 3 illustrates a drop down list that would appear on
device 50 and that corresponds to the possible actions a user

US 10,083,106 B2

7

can perform at a given point in an execution step. In the
example with the Document Viewer bug, assume the
reporter selects “click” as the first action in the set of
possible actions shown in FIG. 3. Note that the “type” action
corresponds to the user entering information from the device
keyboard. When the reporter selects the “type” action, a text
box would be presented in the prompt on device 50 to collect
the information the reporter typed in the box during execu-
tion of the app that caused the bug.

FIG. 4 illustrates another drop down list (appearing on
device 50) of attributes corresponding to the component
associated with the action in the execution step. In the
illustrated example, the bug reporter can define, for example,
the following:

“Component Type™: this is the type of component that is
being operated upon, e.g., “Button” in the example
illustrated in FIG. 4;

“Component Text”: the text associated with or located on
the component, e.g., “OK”, “Restore”, “Search” in the
example illustrated in FIG. 4;

“Relative Location™: the relative location of the compo-
nent on the screen, e.g., “Center”, “Top Right” in the
example illustrated in FIG. 4; and

“Component Image”: an in-situ (e.g., embedded in the
drop down list) image of the instance of the component,
e.g., the images of the “OK”, “Restore” and “Search”
buttons in the example illustrated in FIG. 4.

As will be explained later herein, relative location is
displayed to make it easier for reporters to reason about the
on-screen location, rather than reasoning about pixel values.
For the illustrated example, the component drop down list is
populated with all of the clickable components in the Main
Activity (i.e., the initially displayed screen of the application
in question) since this is the first step and the selected action
was “click”. The reporter would then select the component
they acted upon, e.g., the “OK” button located at the center
of the screen as shown in FIG. 4.

A potential complication with component selection from
a drop down list results when there are duplicate compo-
nents on the same screen in the app. Prompt generator 44
solves this problem in two ways. First, prompt generator 44
differentiates each duplicate component from the last
through specifying text “Option #”. Such a designation is
necessary because GUI-components displayed on a particu-
lar screen could be identical according to their attributes
excluding location (e.g. in terms of component type, and the
text associated with the component). Second, prompt gen-
erator 44 attempts to confirm the component entered by the
reporter at each execution step by fetching augmented
screen shots from database 30 representing the entire device
screen, e.g., a mobile device’s screen. Each of the screen
shots highlights the representative GUI component 54 (that
would appear on the device screen) with an overlay indicator
56 (e.g., a dashed line box in the illustrated example) as
shown in FIG. 5. To complete the step entry, the reporter
simply selects the screen shot corresponding to both the app
state and the component acted upon. For example, FIG. 5
shows an augmented screen shot with overlay indicator 56
highlighting a button 54 located in the “CENTER RIGHT”
of'the display. The reporter can refer to a screen enumeration
58 (shown in FIG. 6) for a graphical list of location
identifications to use for the possible relative locations of
components on the screen.

After the reporter makes selections from the drop down
lists, they have an opportunity to enter additional informa-
tion for each execution step (e.g., a button had an unex-
pected behavior) in a natural language text entry field. For

10

15

20

25

30

35

40

45

50

55

60

65

8

the running example, the reporter might indicate that after
pressing the “OK” button, the pop-up window took longer
than expected to disappear.

Prompt generator 44 uses the data collected by analysis
processor 20 and stored in database 30. That is, when prompt
generator 44 suggests completion definitions appearing in
the drop down lists, prompt generator 44 queries database 30
for the corresponding state of the app event flow and
suggests information based on the past steps that the reporter
has entered. For example, if a “cold start” for the app is
always assumed by prompt generator 44, the reproduction
steps process always begins from the app’s Main Activity.
However, since bug reporting could conceivably begin from
any of a plurality of application states, the present invention
could be initiated at any state wherein analysis processor 20
would extract the corresponding data. The reporter’s prog-
ress is tracked through the app using predictive measures
based on past steps.

Prompt generator 44 operates on execution steps using
several different pieces of information as input. For
example, the reporter’s reproduction steps are modeled as an
ordered stream of steps S where each individual step s; may
be either empty or full. Each execution step can be modeled
as a five-tuple consisting of {step number, action, comp
name, activity, history}. The “action” is the gesture provided
by the reporter in the first drop-down menu. The “comp
name” is the individual component name as reported by the
Ulautomator interface during dynamic extraction. The
“activity” is the screen the component is found on. The
“history” is the history of steps preceding the current step.
Prompt generator 44 predicts the suggestion information
using the decision tree logic shown in FIG. 7. The logic set
forth in the decision tree is responsible for predicting the
components that are able to be interacted with along a
certain user execution path.

Prompt generator 44 presents components to the reporter
at the granularity of activities or application screens. To
summarize the suggestion process, prompt generator 44
looks back through the history of the past few steps and
looks for possible transitions from the previous steps to
future steps depending on interaction of the components. If
prompt generator 44 is unable to capture the last few steps
from the reporter due to the incomplete application execu-
tion model mentioned earlier, then prompt generator 44
presents the possibilities from all known screens of the app.
In the running example, assume the reporter moves on to
report the second reproduction step. In this case, prompt
generator 44 would query the history to find the previous
activity the “OK” button was located within, and then
present component suggestions from that activity in case the
user stayed in the same activity. Component suggestions
from possible transition activities could be made in the case
where the user transitioned to a different activity.

Because DFS-based exploration used in dynamic execu-
tion 26 is not exhaustive, there may be gaps in database 30
related to possible app screens (e.g., a dynamically gener-
ated component that triggers an activity transition was not
acted upon). Accordingly, a reporter may not find the appro-
priate suggestion in a drop down list. To account for this,
prompt generator 44 can also be configured to allow the bug
reporter to select a special option when they cannot find the
component they interacted with in the auto-complete drop
down list. In the running example, assume the reporter wants
to indicate that they clicked the button labeled “Open
Document,” but the option is not available in the auto-
complete component drop-down list. In this case, the
reporter would select a “Not in this list . . . ” option and

US 10,083,106 B2

9

manually fill in (i) the type of the component, (ii) any text
associated with the component (in this case “Open Docu-
ment”), and (iii) the relative location of the component on
the screen display.

Prompt generator 44 saves the reporter’s execution step
definitions in database 30 (or some other database). The
stored execution step definitions leading to a bug are used by
a report generator 46 to generate a structured report. Since
such reports would generally be of greatest value to an app’s
developer(s), a report generated by system 10 is assumed to
be initiated by a developer’s device 60 via, for example, the
internet 100.

Referring additionally to FIG. 8, report generator 46
causes data to be presented at/on device 60 in the form of an
electronic image 70 that can be divided into three major
sections. A first section 72 presents preliminary information
to include, for example, a report title, device used when the
bug occurred, and a short textual description of the bug. A
second section 74 presents the stepwise list of execution
steps traversed along the execution path leading to the bug.
For each execution step, section 74 can include, for example,
the selected/defined action for each execution step, the type
of component used to carry out the action, the relative
location of the component used to carry out the action, the
activity Java class where the component is instantiated in the
source code, and the component specific screen shot. A third
section 76 presents the stepwise list of full screen shots 78
corresponding to each execution step traversed along the
execution path that led to the bug. In this way, sections 72,
74 and 76 provide a developer with a complete picture of
how the bug was produced.

Each execution step presented in section 74 can lead with

a natural language description of the reporter’s execution
step definitions. Each such natural language description is
generated using a natural language template having “blanks”
that are filled in with the reporter’s execution step definitions
such as the {action, component} tuple defined at each
execution step as described earlier herein. By way of an
illustrative example, a natural language description could be
constructed using the following natural language template:
“<action> on <component>, which is located on the <rela-
tive location> of the screen.”
For the execution steps that have text associated with them,
the <action> placeholder can be modified into, for example,
“Typed <text input> on the <component> . . . ” in order to
capture any specific text inputs from the reporter.

The combination of the natural language description of
each execution step and other data presented in sections 74
and 76 provides the developer with a picture of what the
reporter sees. At the same time, each execution step in
section 74 provides links to the components/attributes in the
source code that impact what the reporter sees and experi-
ences. The computer aided bug reporting system of the
present invention provides a bug reporter with a simple
prompt interface to define the execution steps leading to a
bug, and provides a developer with a stepwise report of the
reporter’s experience and the source code elements associ-
ated with each execution step.

INCORPORATION BY REFERENCE

All publications, patents, and patent applications cited
herein are hereby expressly incorporated by reference in
their entirety and for all purposes to the same extent as if
each was so individually denoted.

Equivalents

30

40

45

55

10

While specific embodiments of the subject invention have
been discussed, the above specification is illustrative and not
restrictive. Many variations of the invention will become
apparent to those skilled in the art upon review of this
specification. The full scope of the invention should be
determined by reference to the claims, along with their full
scope of equivalents, and the specification, along with such
variations.

We claim:

1. A computer aided method for generating a hug report
for a GUI application, comprising the steps of:

extracting static data indicative of GUI components and

attributes of said GUI components from source code for
a GUI-based application having execution paths that
generate a plurality of screen displays according to user
interactions during run-time execution of said source
code, each of said screen displays using said GUI
components defined by said source code, said attributes
including one of more of: possible actions on said GUI
components, types of said GUI components, activities
said GUI components are contained within, and class
files where said GUI components are instantiated;
storing said static data in a database;

executing said source code in a run-time environment

through said execution paths according to automati-
cally-generated user inputs, wherein each of said
execution paths is defined by execution steps and
wherein each of said execution steps generates a run-
time screen display using, at least one of said GUI
components;

storing, in said database, dynamic data indicative of each

said run-time screen display;

generating, using said static data and said dynamic data,

a sequence of prompts on a first electronic display
device, said sequence of prompts being ordered in
accordance with one of said execution paths subject to
a software bug Wherein each of said prompts is asso-
ciated with one of said execution steps leading to said
software bug, each of said prompts presenting said GUI
components associated with said one of said execution
steps, said attributes of said GUI components associ-
ated with said one of said execution steps and user
action options associated with said one of said execu-
tion steps, wherein said user action options are sugges-
tions generated using said static data and said dynamic
data to provide a user with a selection of said possible
actions the user can perform at said one of said execu-
tion steps and a selection of attributes of said GUI
components associated with said possible actions the
user can perform at said one of said execution steps:
and

generating a report for presentation on a second electronic

display device, said report listing ones of said execu-
tion steps leading to said software bug and presenting
said run-time screen display associated with each of
said ones of said execution steps leading to said soft-
ware bug based on said user action options selected by
a user.

2. A computer aided method for generating a bug report
as in claim 1, further comprising the step of displaying a
screen shot on said first electronic display device for
selected ones of said execution steps having duplicate ones
of said GUI components appearing thereon.

3. A computer aided method for generating a bug report
as in claim 1, wherein said step of generating said report
further comprises the steps of:

US 10,083,106 B2
1 12

generating a natural language description related to each
of said ones of said execution steps leading to said
software bug using a natural language template; and

displaying said natural language description in said
report. 5

