HPC Resources at W&M ...and How To Use Them

- What resources are available
- How to log into HPC machines
- Setting up your environment
- How to run a job on the cluster
- How to get more help

January 24, 2017

Laura Hild System Engineer Eric J. Walter Manager HPC Jay Kanukurthy Applications Analyst

High Performance Computing

Refers to one or more of the following:

Advanced computer architecture

multi-processor / multi-core machines

High-speed networks

Gigabit Ethernet / Infiniband

Parallel Algorithms

Use multiple cores and/or nodes

Numerical Algorithms

computing efficiently computing in parallel

File Storage

managing disk space efficient i/o

Differences between desktop/laptop vs. HPC

- One processor vs. multi-processor
- Run interactively vs. batch jobs
- Single job vs. multiple jobs
- Prepare on login/head node vs. direct
- Point and click vs. command line

Recent events:

Moved to ISC-3 Q3/4 2016

Consolidated servers/nodes from Jones Hall, JLab, and (some from) physics into Hot-aisle containment APC NetShelter 24 racks, 250 kW power

Total cores available for general use: 2152

Coming on-line soon (by end Q1):

- Bora subcluster: 30 2xIntel E5 2640v4 (40 cores,128GB / node) 1200 cores total
- Meltemi subcluster: 100 Intel Xeon Phi / Knights Landing (64 cores,32GB / node) 6400 cores total – Shared with W&M Physics
- More disk space: ~200 TB parallel file system

New server room ISC 1251

SciClone

Front-end/login	sub-cluster	For beginners	
Typhoon	Typhoon (ty01-ty72) 288 cores 4 cores/node Opteron Santa-Rosa (2.6 GHz) 60: 8 GB/node 12: 24 GB/node ~2007	ssh to typhoon.sciclone.wm.edu to run a job on typhoon	
Hurricane	Hurricane (hu01-hu12) 96 cores 8 cores/node Intel X5672 (3.2 GHz) 48 GB/node ~2011 Whirlwind (wh01-wh52) 448 cores 8 cores/node Intel X5672 (3.2 GHz) 44: 64 GB/node		
Vortex	Vortex (vx01-vx36) 432 cores 12 cores/node Opteron Seoul (3.1 GHz) 28: 32 GB/node 8: 128 GB/node ~2015		
Storm	Wind (wi01-wi28) 448 cores 12 cores/node Opteron Magny-Cours (2.4 GHz) 32 GB/node ~2012	ice (ice01,ice02) 48/32 cores Opteron Magny-Cours (2.4 GHz)	
	hail (ha01-ha38) 304 cores 8 cores/node Opteron Shanghai (2.4 GHz) 28: 32 GB/node 8: 128 GB/node ~2011	96/64 GB/node ~2012	

Necessary Topics for HPC

- How to log into HPC machines?
- Linux Shell / Text editors basic Linux skills.
- What software do I want to run? (do I need to compile?)
- What sub-cluster will I use?
- What file-system should I use?
- Using the batch system.

Where to get help?

HPC webpage: HPC ticket system http://www.wm.edu/offices/it/services/hpc/atwm/index.php mail: *hpc-help@wm.edu*

Logging into HPC machines

Must use Secure Shell client (SSH)

- Linux / Mac built-in (terminal)
- Windows SSH Secure Shell Client / PuTTY

[ewalter@particle ~]\$ ssh hurricane.sciclone.wm.edu Password: Last login: Tue Feb 2 13:57:59 2016 from particle.hpc.wm.edu		
W	lliam and Mary Information Technology / SciClone Cluster	
•		
1 [hurricane		

Questions to ask yourself:

- Am I on or off campus?
- If you are off-campus

log into stat.wm.edu first using your W&M username and password

• Is my username the same as my current machine? If it is different use: ssh <username>@<host>.<domain>

• **Do I need graphics?** If yes, then log in with -X

Linux Shell Usage

Main things to learn about linux/shell

- learn to log in and out of front-end servers ssh, X forwarding, alternate user name
- manipulating files/folders
 - cd change directory cp – copy file mv – rename file man – read manual page rm – remove file mkdir – make directory rmdir – remove directory
- configuring your environment env – print your environmentals variables editing your .cshrc.\$PLATFORM file

http://www.wm.edu/offices/it/services/hpc/using/shell/index.php - page of linux tutorials

Popular text editors: emacs or vi/vim

emacs: huge, bloated, not installed by default, but the champion! *vi/vim*: tiny, always available, some users love it (?)

nano: editor with training wheels, very easy to use, not very powerful

Emacs Tutorials

http://www.gnu.org/software/emacs/tour/ http://www.jesshamrick.com/2012/09/10/absolute-beginners-guide-to-emacs/ http://www2.lib.uchicago.edu/keith/tcl-course/emacs-tutorial.html

Vim Tutorials

http://www.vim.org/ http://vim.wikia.com/wiki/Tutorial http://linuxconfig.org/vim-tutorial

Nano homepage

http://www.nano-editor.org/

Using Software

- All HPC machines use *Environment Modules* to select software
 - Environmental variables determines a user's environment ; what commands/applications/libraries are available

\$PATH – determines what can be executed \$LD_LIBRARY_PATH – determines what libraries are available at run time

- Environment Modules make these easy to change on the command line
- Before running applications on HPC machines, modules should be selected
- Default software modules can selected (best) by editing appropriate .cshrc.\$PLATFORM
- Modules can be changed on demand (not as good but can be necessary)

Learning how to use Modules is important for using HPC

Using Software Modules

15 [hurricane] module avail

	/usr/local/Modules/modulefiles
acml/5.1.0/gcc	<pre>mpc/0.8.2(default)</pre>
acml/5.1.0/pgi	mpfr/2.4.2
acml-int64/5.1.0/gcc	mpfr/2.4.2a(default)
acml-int64/5.1.0/pgi	mpi4py/1.3.1/gcc
acml-mp/5.1.0/gcc	mummer/3.23
acml-mp/5.1.0/pgi	mvapich2-ib/1.2x1/pgi
acml-mp-int64/5.1.0/gcc	mvapich2-ib/1.9/gcc
acml-mp-int64/5.1.0/pgi	mvapich2-ib/1.9/gcc-4.8.4
admb/11.2b/gcc	mvapich2-ib/1.9/pgi
allpathslg/47017/gcc	mvapich2-ib/1.9a2/gcc
•	•
•	•

16 [hurricane] module	e list			
Currently Loaded Modu	ulefiles:			
1) modules	2) maui/3.2.6p21	3) torque/2.3.7	4) isa/nehalem	5) gcc/4.7.0
6) python/2.7.5/gcc				

http://www.wm.edu/offices/it/services/hpc/using/modules/index.php - online module help

Can use module load and unload commands for current shell. Best to use startup

Configuring your Environment

\$PLATFORM variable:

11 [hurricane] echo **\$PLATFORM** rhel6-xeon

This means that startup is controlled by *.cshrc.rhel6-xeon* for *hurricane*

subcluster	front-end	\$PLATFORM	isa	set?
typhoon	typhoon	sles10-opteron	amd64b	
hurricane	hurricane	rhel6-xeon	nehalem	
whirlwind	hurricane	rhel6-xeon	nehalem	
vortex	vortex	rhel6-opteron	seoul	
wind	storm	rhel6-storm	magny-cours	set_wind
ice	storm	rhel6-storm	magny-cours	set_ice
hail	storm	rhel6-storm	shanghai	set_hail

The .cshrc.\$PLATFORM controls what modules are loaded for a batch job

HPC Filesystems / Backup

3 types of filesystems:

home – backed up nightly ; small used for input files and code, etc.
 data – backed up weekly ; large files ; medium term storage
 scratch – NOT backed up ; large output files short term storage

146 [hurricane] df -h Filesystem Size Used Avail Use% Mounted on • /dev/mapper/VolGroup30-LogVol31 917G 482G 390G 56% /sciclone/home00 tn00:/usr/local 134G 113G 15G 89% /usr/local 46G 15G 30G 33% /import tn00:/export mh00:/var/spool/mail 7.9G 4.3G 3.3G 57% /var/spool/mail qfs00:/sciclone/home04 591G 429G 157G 74% /sciclone/home04 tv00:/sciclone/scr02 273G 81M 273G 1% /sciclone/scr02 tn00:/sciclone/scr10 7.9G 2.3G 5.3G 31% /sciclone/scr10 tn00:/sciclone/scr30 13T 4.7T 72% /sciclone/scr30 17T gfs00:/sciclone/data10 15T 1.9T 89% /sciclone/data10 16T tw00-i8:/sciclone/data20 73T 57T 16T 79% /sciclone/data20 5.0T 2.8T 65% /sciclone/scr20 /dev/md1 8.1T vx00:/sciclone/home10 202M 2.6T 1% /sciclone/home10 2.7T vx00:/sciclone/scr00 318G 4.8G 297G 2% /sciclone/scr00

Use local scratch if you can! Will give the best performance...

- x5672 any hurricane or whirlwind node
- **c18b** only large memory vortex nodes

See online documentation or send email to hpc-help@wm.edu for more information

http://www.wm.edu/offices/it/services/hpc/using/jobs/index.php

Using the Batch System II

You can also submit a *batch* job which does not run interactively First you must write a *batch script*:

34 [hurricane] cat run #!/bin/tcsh #PBS -N test #PBS -l nodes=1:x5672:ppn=8 #PBS -l walltime=0:10:00 #PBS -j oe

cd \$PBS_0_WORKDIR

python prog.py >& prog.out

#!/bin/tcsh -N -I -j	interpret the following in tcsh syntax name of the job job specifications (walltime ; nodespec) combine stderr and stdout
cd \$PBS_O_WORKDIR	cd to where I submitted the job
./a.out	run the job

35 [hurricane] qsub run

148 [vortex] more test.o2785870 Warning: no access to tty (Bad file descriptor). Thus no job control in this shell. tput: No value for \$TERM and no -T specified

most widely used batch commands

qsub – submit job **qdel** – delete job **qstat** – list jobs **qsu** – list my jobs

Using the Batch System III

MATLAB example

107 [hurricane] more run #!/bin/tcsh #PBS -N test #PBS -l nodes=1:c9:ppn=1 #PBS -l walltime=12:00:00 #PBS -j oe #PBS -q matlab

matlab -nodisplay -r "readMatrix" >& OUT

```
108 [hurricane] head readMatrix.m
tic
%parpool(8)
syms a b c d;
meshpoints = meshgenerator();
eigfile = fopen('eigfile.txt', 'wt');
count = 1;
count2 = 1;
%set(0, 'CurrentFigure', 1);
%plot3(0,0,0,'.');
%grid on
.
```

must add -q matlab for matlab jobs

load matlab module (if needed)

redirect stdout and stderr

file for stdout and stderr

http://www.wm.edu/offices/it/services/hpc/using/tutorials/index.php

Using the Batch System IV

Gaussian example: Can get test input files (.com files) and supplied answers from

/usr/local/gaussian/g09/tests/com and /usr/local/gaussian/g09/tests/amd64

test0000.com is the input file (from the com folder) test.out0000 is the output file

Can we do something better than a serial job?

Gaussian Link 0 commands

from: https://www.msi.umn.edu/sites/default/files/IntroToGaussian09.pdf

%mem=n sets the amount of dynamic memory (n), default is 32MB. Units allowed, kb, mb, gb, kw, mw, or gw.

%nproc=n sets the number of processors, n, to use

%chk=file location and name of checkpoint file

%rwf=file location and name of rwf file

```
17 [typhoon] head input
%nproc=1
%mem=6gb
%rwf=/sciclone/scr10/ewalter/testrwf
%chk=/sciclone/data10/ewalter/testchk
#p pbepbe/6-311G sparse test scf
.
```

Gaussian Shared Memory Parallel

Gaussian09 has the ability to use multiple cores within a node (larger calculations)

Always worth checking that parallelism is not slowing down run!

Where to get help?

HPC webpage: HPC ticket system http://www.wm.edu/offices/it/services/hpc/atwm/index.php mail: *hpc-help@wm.edu*

Using the ticket system is useful since it is *monitored by three of us*

WE'RE HERE TO HELP!