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Abstract 

 The energy spectrum of baryons containing three bottom quarks has been calculated theoretically 

by studies using nonperturbative and nonrelativistic, lattice Quantum Chromodynamics (lattice QCD) and 

by studies using potential models to account for the different interactions between the quarks. We use the 

results of the Lattice QCD study done by Stefan Meinel [1] as a starting point for our investigation, 

because it is a thorough and recent description of how values for the energy levels can be found. We hope 

to understand the discrepancies between his QCD results and the results of potential models which also 

have listed values of the energy spectrum, most notably the potential models used by Silvestre-Brac [2]
1
, 

and Roberts and Pervin [3]. In comparing the energy values for the first ten excited states of these 

potential models, we start with a harmonic oscillator potential, with terms added in to account for the 

short range (Coulomb), spin-spin, and spin-orbit interactions. From this comparison, we hope to learn 

why these potential models disagree, and which is preferable, based on the authors’ use of these three 

interactions. We also hope to learn whether or not a potential model can reproduce the results attained by 

Meinel and if such a potential model gives insight into the behavior of triply bottom baryon system.
2
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1
 We use the AP2 potential model from [2] for this paper. 

2
 We exclude a tensor interaction term because we accept that the tensor interaction is small based on [2] and [3] 

noting that this term is small enough to neglect, and [2] still produces reasonably close values to the lattice QCD 

results. 



 

 

 

 

Research 

1. Introduction 

The splittings of the energy levels seen in the results of the lattice QCD and the two potential models are 

shown below. We wanted to examine the interactions used in each potential model to understand which 

interactions contribute to each splitting and try to correlate the energy values of the ten excited states of 

the potential model with those from the QCD results in order to label each excited state.  

 

Figure 1: Comparison of the energy splittings from [1], [2] , and [3]. The colored dots are the QCD 

results, the initials “SB” are [2] and “RP” are the values from [3]. The energy splittings are given from 

the energy of the ground state; i.e. the ground state energy is the zero of the graph. The energy values are 

organized by total angular momentum  .  



We start by identifying the wavefunctions of the triply bottom baryon, and then use these to perform first 

order energy corrections on terms included for each interaction. Based on the conclusions found in [2], 

we do not include the tensor interaction because it is negligibly small. We do include a Harmonic 

Oscillator potential as a starting point, then include a perturbing Hamiltonian for the short-range or 

Coulomb potential, the spin-spin interaction, and the spin-orbit interaction. Once these corrections are 

found, we use them to qualitatively compare the splittings between the different excited states.  

 

2. Background and the Ground State 

 We began by studying how to describe the wavefunction of triply bottom baryon, and since 

baryons are fermions, and the wavefunction which describes the three baryons must be antisymmetric. 

This means that changing any two of the particles in the formalism will give the same wavefunction but 

with an opposite sign. The total wavefunction | ⟩  |  (     )⟩ is a combination of spatial, spin, flavor 

and color wavefunctions, written as:   

|  (     )⟩  |       ⟩|    ⟩|      ⟩|     ⟩   (1) 

This function is antisymmetric in that: 

    |  (     )⟩   |  (     )⟩     (2)

  

 Each part of  | ⟩ is a combination of the respective wavefunctions of each individual quark. 

Then, for example, the total wavefunction has a spatial sub-wavefunction |       ⟩, which is a 

combination of the spatial functions for each of the individual quarks, which could be written 

|       ⟩  | ( ) ( ) ( )⟩, where  ( ) represents the spatial state of the     particle. 3 

  The total wavefunction is antisymmetric so the product of the sub-wavefunctions must be 

antisymmetric also. A sub-wavefunction is symmetric if switching any two of the wavefunctions of the 

individual quarks does not affect the total state; and a sub-wavefunction is antisymmetric if switching any 

two of the wavefunctions of the individual quarks gives the total state with the opposite sign. Often 

though, the sub-wavefunction does not fall into one of these categories, in which case we can make the 

product of two (or more) of the sub-wavefunctions a mixed symmetry state.  

 For the triply bottom baryon combination, two of the sub-wavefunctions are already determined. 

The color wavefunction is taken to be the totally antisymmetric color wavefunction |     ⟩      
4. The 

flavor wavefunction is totally symmetric, since all three baryons are of bottom flavor, or |      ⟩  

                                                           
3
 The first number in this Ket notation here describes the first baryon, the second describes the second baryon and 

the same holds for the third. This holds for the description of the other parts of the wavefunction as well. 
4
 These colors describe how these baryons have strong force interactions, and these interactions are not pursued 

further than the affect these colors have on | ⟩, that is, by adding an antisymmetric component. The flavor 

component is treated in this way as well, and these two sub-wavefunctions are taken to be implicit in the total 

wavefunctions to follow, which are only products of spatial and spin sub-wavefunctions. 



|   ⟩. This means that the product of the spatial and spin wavefunctions must be symmetric so that the 

total wavefunction, as a product of these parts, is antisymmetric.  

 To describe the symmetry of the spatial sub-wavefunctions, it is useful to relate the sub-

wavefunction to the energy levels associated with each of the three baryons. In general, the energy level 

of each baryon can be described by a single index called the principal quantum number  . This number 

denotes the energy level    of a given system, and is an integer because the energy levels are quantized, 

that is, they have discrete values instead of a continuous range of values. The state    of the system is the 

lowest energy level the system can obtain, and is called the ground state. 

  The principal quantum number is also used to determine the possible values for the orbital 

angular momentum of the system. The orbital angular momentum can take on values of   

           , where     are defined as S-states,     are P-states, and     are D-states. These 

values are actually integer multiples of a value       , where   is Planck’s constant, but it is 

convention to refer to orbital angular momentum in terms of the value of   rather than inserting this 

constant. Each energy level    of the total system (the three baryons together) determines the possible 

combinations of the orbital angular momentum of each baryon.  

 For the ground state| ⟩  |  ⟩ ,     (and thus    ) and so there is no degeneracy, and each 

quark must have zero orbital angular momentum, meaning that each quark must be in an S-state, which is 

the state listed above as |   ⟩. For the first and second excited state      , there are many 

possibilities, the spatial wavefunction could be any of the three types of symmetry, because switching the 

states of the baryons around can change the spatial sub-wavefunction in an asymmetrical manner. In 

order to produce the correct overall symmetry for states like these, it is necessary to find a product of the 

spin and spatial wavefunction. 

 The ground state will give insight into how to build a product of the spin and spatial wavefunctions that 

is symmetric. Since the spatial wavefunction is symmetric in the ground state, and the product of the spin 

and spatial wavefunctions must be symmetric, so the spin wavefunction must be symmetric as well. 

 

A. Orbital Angular Momentum 

 Each quark has an orbital angular momentum     and a spin
5
     for a given state or total 

wavefunction; the total wavefunction also has a total orbital angular momentum   and a total spin  6. We 

                                                           
5
 We take the conventional spin projection, that is, the projection of the spin along the z-axis. Also,         for 

the three quarks. 
6
 The relationship between the orbital angular momentum and spin of the particular quark and that of the total 

wavefunction is not a general relationship and depends on how these quantities add as vectors. Instead of taking all 

three orbital momentums, we will use a coordinate simplification to use only the orbital momentum projection along 

two directions, but continue using the spin projection of all three quarks.  



can also describe the orbital angular momentum in terms of the parity of the system. Parity describes the 

transformation that occurs when the spatial wavefunction has the sign of its variable   (     ). This is 

to say, parity describes the transformation of the wavefunction as   goes to   . Either the spatial 

wavefunction will remain the same or it may switch signs. Those spatial wavefunctions whose sign does 

not switch under the transformation
7
 to –r are called positive parity states, while those that do have a sign 

switch are called negative parity states; those states which do not fall into either category do not have a 

definite parity. For the spatial portion of the ground state wavefunction, we have |   ⟩, and switching to 

   will not affect these functions, so the ground state has positive parity, and the parity p, along with the 

total angular momentum    is written        . This result comes from the fact that these spatial states 

are spherical harmonic solutions to the Schrodinger equation for the potential models we consider here. 

These functions involve trigonometric functions (generally products of sines and cosines with an 

exponential function of  ) which help to determine how these three transformations affect the sign of the 

overall state. The ground state spherical harmonic does not have an angular dependence, and so does not 

affect the sign of the overall wavefunction, so the sign of the ground state spatial sub-wavefunction 

remains the same under this transformation, and so has positive parity.
8
 Thus the ground state spatial sub-

wavefunction has all three quarks in an S-state: |  (        )⟩  | (  )  (  )  (  )⟩, which is 

completely symmetric and of positive parity. 

 

B. Spin Angular Momentum 

 Each baryon has a spin which is an intrinsic angular momentum of the quark. Analogously to 

how the Earth rotates about the sun has angular momentum associated with its orbit (orbital angular 

momentum) and angular momentum associated with its rotation about its center of mass (called the spin 

angular momentum), each baryon has orbital angular momentum around their combined center of mass, 

and spin angular momentum. Although the spin of the baryons is not exactly analogous mathematically to 

the spin in classical mechanics, it does share one important property with the classical spin: the sum of 

the orbital angular momentum and the spin gives the total angular momentum of the system in both 

classical and quantum mechanics. The spin value    for each quark is  
 

 
 , but the projection along the z-

axis    of each of the quarks can be either  
 

 
   or   

 

 
 . 

  The possible spin wavefunctions for triply bottom baryons can be enumerated [1]. These 

wavefunctions are combinations of the possible spin states of the three baryons; that is, we can enumerate 

                                                           
7
 Although this is referred to as one transformation, it is actually a collection of three transformations:     , 

     , and       . 
8
 In general, parity flips at the next index of  ; so the ground state has positive parity, the 1

st
 excited state has 

negative parity, and the 2
nd

 excited state has positive parity, and so on.  



the possible combinations of the three baryons by varying which is baryon has a spin projection upwards 

or downwards along the z-axis (i.e. spin up or spin down) and then combine these into spin states. The 

possible combinations of the three baryon spin projections are: 

|      ⟩  {|   ⟩  |   ⟩  |   ⟩  |   ⟩  |   ⟩  |   ⟩  |   ⟩  |   ⟩} 

These spin combinations can then be combined into a number of symmetric spin sub-wavefunctions or 

spin states |    ⟩9: 

     |    ⟩  |
 

 
 
 

 
⟩  |   ⟩ 

    |
 

 
 
 

 
⟩  

 

√ 
( |   ⟩   |   ⟩   |   ⟩)  

(3) 

    |
 

 
 
  

 
⟩  

 

√ 
( |   ⟩   |   ⟩   |   ⟩)  

 

      |
 

 
 
  

 
⟩   |   ⟩ 

In (3), the coefficients in the |
 

 
 
 

 
⟩ and |

 

 
 
  

 
⟩ states are to ensure each state is properly normalized and 

that the spin states obtain the proper projection along the z-axis. The square of the coefficient in from of 

each of the possible combinations, that is, the square of the modulus, is the probability that the baryons 

will be found in that particular combination. For instance, because each of these two states, |
 

 
 
 

 
⟩ and 

|
 

 
 
  

 
⟩,   involves three terms, and the coefficient squared of each term is    , this means that any one of 

the three combinations is equally possible to obtain if the spin projection along the z-axis was to be 

measured for the total system.  

 The total spin of the system could be,      , instead of      , in which case we have other 

possible spin states. The spin combinations can form mixed-symmetric and mixed-antisymmetric spin 

states for      . These are mixed states which are symmetric or anti-symmetric when interchanging 

the first and second particles, but not when interchanging the first and third, or second and third. This 

means the first two particles of the three particle state, when interchanged, will produce either a 

symmetric or antisymmetric wavefunction, while interchanging other pairs of the particles may not 

produce a state with a definite symmetry. The mixed symmetric spin states are: 

|
 

 
 
 

 
⟩
  

 
 

√ 
( |   ⟩   |   ⟩    |   ⟩)  

(4) 

|
 

 
 
  

 
⟩
  

 
 

√ 
( |   ⟩   |   ⟩    |   ⟩) 

 

                                                           
9
 This notation gives the total spin of the state   and the total projection along the z-axis of that state   . 



 

The mixed-antisymmetric states are: 

|
 

 
 
 

 
⟩
  

 
 

√ 
( |   ⟩   |   ⟩) 

(5) 

|
 

 
 
  

 
⟩
  

 
 

√ 
( |   ⟩   |   ⟩) 

 

 As mentioned, the sum of the spin and the orbital angular momentum gives the total angular 

momentum   of  the system: 

                           (6) 

  Each of the individual quarks may be either spin up or spin down, but for the spin sub-

wavefunction to be symmetric, as is required of the ground state (since the spatial sub-wavefunction will 

be symmetric) all three must be spin up, which gives the ground state a total angular momentum of   
 

 
. 

So the product of the spin and spatial sub-wavefunctions for the ground state is:  

|  ⟩  | (  )  (  )  (  )⟩ |
 

 
 
 

 
⟩  

 

3. First Excited State 

 

A. Orbital Angular Momentum 

The first excited state |  ⟩  has    , and so the orbital angular momentum of the system could be one 

of two values   {   }. If    , then two of the baryons would need to be in S-states while one would 

be in a P-state, or for    , we have the same symmetric state | (  )  (  )  (  )⟩ as for the ground 

state.  We will show that, for     , there are no possible completely symmetric or completely 

antisymmetric spatial sub-wavefunctions for this case, and then show that two mixed symmetric states do 

exist. 

We show that there is no completely symmetric spatial sub-wavefunction for     first excited state. As 

mentioned above, these spatial states are products of a radial function and spherical harmonic functions. 

Here we consider the spherical harmonics, which we write as  |    ⟩       
(        )10. In this 

notation, the spherical harmonic      
 is a function of the position vectors of the three particles, but this 

                                                           
10

 In this notation,   is the third principle quantum number, and | |   , not to be confused with the projection of 

the total spin   , or the three projections of the spin for each quark   . 



may be written in terms of the momentum
11

   of the system as |       ⟩       
 (  ), where      is still 

a function of the two angles   and  , but  (  ) is a function denoting the dependence of the state on the 

magnitude of the momentum squared. The spherical harmonics can related by ladder operators, which are 

constructed using cross products of   with the momentum operators    
 

 

 

  
    

 

 

 

  
    

 

 

 

  
, 

which give the projection of the total momentum along the three Cartesian axes when applied to a given 

state |    ⟩  . The state |   ⟩ can be given by applying the following operator to a state dependent 

solely on the magnitude of the radius: 

       
  

√ 
   

  

√ 

 

  
,      (7) 

 and the states one level higher or one level lower are given by the operators: 

         
 

 
(      )   

 

 
( 

 

  
   

 

  
).    (8) 

 The possible spherical harmonics for the system are with          , since |  |     : 

|    ⟩  

{
  
 

  
  √

 

  
         (  )           

√
 

  
      (  )            

√
 

  
         (  )         

 

{
  
 

  
  √

 

  

 

√ 
  (  )(      ) | |

√
 

  
  

√
 

  

 

√ 
  (  )(      ) | |

 

√
 

  
  (  )   

 

| |
    

  (  )     (9) 

Where, in (6),  (  ) is a function of    which contains the other constants, and    
 is the projection 

operator corresponding to the value of   . If we consider the completely symmetric state:  

|       ⟩   
 

√ 
(|   ⟩  |   ⟩  |   ⟩) 

For     , we have: 

|      ⟩  
 

√ 
(|   ⟩  |   ⟩  |   ⟩)      (  )  

 

√ 
(                 )  (  ) 

Where 
 

√ 
 is the normalization constant, and                are the projections of the momentum along the 

  axis for each of the states combined in the symmetric spatial state. For this equation to be applicable, it 

must be able to handle the fact these particles are travelling very fast, and so must be invariant under 

changing reference frames. In particular, this equation must hold in the reference frame of the center of 

mass of the system. However, about the center of mass, the total momentum of the system is zero, so the 

sum of the projections of the momentum along the   axis (              ) must also be zero, so our 
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 Working with the spatial states written in terms of momentum is conventionally referred to as “working in 

momentum space” and writing the states in terms of the radii as “working in position space.” 



spatial wavefunction goes to zero at      for a symmetric wavefunction, which cannot be the case, so 

the completely symmetric case cannot occur.  

To see that there are no completely anti-symmetric spatial states, we look at the possible states that have 

one baryon in a P-state while the other two are in S-states. The possible states are the three used in 

showing the symmetric case is not possible: |   ⟩ |   ⟩ |   ⟩. Meinel notes that a completely anti-

symmetric combination of these three states does not exist, and this can be verified by inspection, through 

changing the signs and coefficients of a combination of these states. 

 

B. Spatial-Spin Product Sub-Wavefunctions 

This leaves mixed symmetry spatial states, which require mixed symmetry spin states to make sure the 

total wavefunction of the system is antisymmetric. There is one mixed-symmetric state and one mixed-

antisymmetric state, and both work for      and      : 12 

|     ⟩   
 

√ 
( |   ⟩  |   ⟩  |   ⟩) 

(10) 

|    ⟩   
 

√ 
(|   ⟩  |   ⟩) 

 

These states can be combined with the mixed symmetry spin states, which have a total spin of   
 

 
, to 

produce the anti-symmetric total wavefunction required for the system of three baryons. Then we can 

construct the following four spatial-spin products: 

 |       ⟩  |
 

 
 
 

 
⟩
  

 |       ⟩  |
 

 
 
  

 
⟩
  

  |       ⟩  |
 

 
 
 

 
⟩
  

 |    ⟩  |
 

 
 
  

 
⟩
  

.  

These products can be combined to form a symmetric spatial-spin state: 

|       ⟩   ∑
         

        

√ 
(|       ⟩  |

 

 
   ⟩

  
 |       ⟩  |

 

 
   ⟩

  
)

     

  

Where        , and    
 

 
  

 

 
, and          

        
 is a notation for the correct Clebsch-Gordan 

coefficient for the values of    and   . The possible total angular momentum values for this state are: 

            
 

 
 {

 

 
           

 

 
            

       (11)
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 The subscripts here stand for Mixed Symmetric and Mixed Anti-symmetric, and we use this notation throughout. 



As mentioned, the parity for the     energy level is negative, so for the 1
st
 excited state, there are two 

values of the total angular momentum    
 

 

 
 
 

 

 
. 

 

4. Second Excited State 

For the second excited state,    , so        . Meinel shows that there are four possible spatial sub-

wavefunctions which can be combined with the spin sub-wavefunctions to form the antisymmetric total 

wavefunction needed for this three baryon system. There are completely antisymmetric and completely 

symmetric spatial states, because the sum of the projections of the momenta mentioned in considering the 

first excited state becomes a sum of the square of the momenta for these D-states. The spatial 

wavefunction for D-states can be formed by taking the product of P-state spatial sub-wavefunctions [1]13: 

|     ⟩ 
   

 ∑     (  |       ⟩  |       ⟩   |       ⟩  |       ⟩  )

     

 

 

|     ⟩  
   

 ∑     ( |       ⟩  |       ⟩   |       ⟩  |       ⟩  )

     

 

(12) 

|     ⟩  
   

 ∑     (  |       ⟩  |       ⟩   |       ⟩  |       ⟩  )

     

 

 

|     ⟩ 
   

 ∑     (  |       ⟩  |       ⟩   |       ⟩  |       ⟩  )

     

 

 

Note that the first three combinations give either     or    , while the last restricted to    . These 

are then combined with the spin states from equations (3), (4) and (5), to produce the proper symmetry of 

the spatial and spin sub-wavefunctions [1]. We note that there is no completely anti-symmetric spin state 

combine with |    ⟩ 
   

, so this spatial state is excluded, while the other three can be combined with spin 

states to produce the following four states that satisfy the antisymmetric requirement of the total 

wavefunction: 

|                
 

 
     ⟩  |    ⟩

 
|
 

 
  ⟩ 

(13) 
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 The additional + sign is to emphasize the permutation of the sign to create the different symmetries, and      are 

the correct Clebsch-Gordan coefficients for the sum. Here the subscripts on the spatial state ket notation are 

Symmetric, Anti-symmetric, and Mixed Symmetric and Mixed Anti-symmetric as above. The superscript is 

differentiate between the spatial states of the D-states (   ) from the P-states (   ) which are combined to 

form the D-states. Also        , the sum of the projections of the momenta along the   axis, which we allow 

to vary in these states.  



|                
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√ 
(|    ⟩  |
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 |    ⟩  |

 

 
  ⟩

  
) 

 

|                
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√ 
∑  (|      ⟩  |

 

 
    ⟩

  
 |      ⟩  |

 

 
    ⟩

  
)

     

 

 

|                
 

 
     ⟩  ∑  |      ⟩      

|
 

 
   ⟩. 

 

For the first product in (12),          
 

 
 

 

 

 
, since the state |  

 

 
     ⟩, must have 

  
 

 
. For the second product,          

 

 
 

 

 

 
, since   must be greater than zero. For the third 

product, there are two values since there are two values for    
 

 
, then      

 

 
 

 

 

 
 
 

 

 
. For the 

last product, the values of   are:  
 

 
  

 

 
 
 

 
 
 

 
, and these give    

 

 

 
 
 

 

 
 
 

 

 
 
 

 

 
.  

 

5. Energy State Summary 

From the first and second excited states, we find ten possible values for the total angular momentum, but 

we use the eight values for the angular momentum produced by the second excited state for comparison 

between the potential models and the lattice QCD values. The graph of the energy levels given by Meinel 

[1] show how these eight levels split due to the other interactions. We reproduce this splitting 

qualitatively by including terms in our potential model, following the terms given by [2] and [3], which 

account for the short range, spin-spin, and spin-orbit interactions. In order to assess how each of these 

interactions affect the energy levels, we used 1
st
 order perturbation theory to calculate the energy 

correction of the spin-spin and spin-orbit interaction, and used these results to model how these 

degenerate states split. 

 

 

 

 

 

 



Table 1: Total Momentum of First and Second Excited States 

N=1     
  

 

 
    

 

 

 

 
 

 

 

 

        
  

 

 
    

 

 

 

 

  
  

 

 
    

 

 

 

 

     
  

 

 
    

 

 

 

 
 

 

 

 

  
  

 

 
    

 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 

 

 

6. Harmonic Oscillator Potential 

Once we found the possible spatial-spin product sub-wavefunctions, we looked at the two potential 

models to see which of the two produced energy values most similar to [1] which was done by Silvestre-

Brac [2]. We used the Roberts and Pervin results [3] to compare and constrast the two potential models to 

see where clear differences were, and how these differences might affect their results. In following [2], 

we used a Harmonic Oscillator potential with a short range perturbation, and then added terms for 

interactions that should contribute to the energy splittings. We wrote the Hamiltonian for this setup as: 

 

   
  

  
(  

    
    

 )  
 

 
 (     )

  
 

 
 (     )

  
 

 
 (     )

  

Where      is the mass of the bottom baryons, and   is a spring constant. We then used three relative 

coordinates:  

  
 

 
(        ) 

       √
 

 
(
     

 
   )     (14) 

  
 

√ 
(     ) 

In order to rewrite the Hamiltonian in terms of the momentum of the three quarks. Using the Hamiltonian 

rewritten in terms of momentum, we can choose to work in the reference frame of the center of mass of 

the system, in which the net momentum about the center of mass is zero; this eliminates  , which reduces 



this three body problem to a two body problem with a momenta in the direction of   and  . The 

Hamiltonian can then be written in terms of a   and    part, so         , where: 

 

   
 

  
  

  
 

 
     

 

For         , and       and     . We can then use this Hamiltonian to solve the Schrodinger 

equation, which was previously done by Isgur and Karl [4]. We use their solutions for the symmetric, 

antisymmetric and mixed symmetry spatial sub-wavefunctions, and then combine them with the spin sub-

wavefunctions described above to find a product of the two states which give the proper symmetry of the 

overall wavefunction. Then we use these wavefunctions to calculate the energy corrections due to 

including other interactions.  

 

   
   

 

√ 

  

     
(           ) 

[ 
 
 
  (      )] 

 

            (15) 
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Where    (   )
 

 . These states are the symmetric and mixed symmetry spatial sub-wavefunctions for 

    and     states. Where the superscripts represent the symmetry of the state; the   superscript 

indicates complete symmetry,   or   indicate which two coordinates are symmetric; that is, for the   

superscript, the first and second quarks are symmetric, and the third and the second are symmetric for the 

  superscript. Below are the sub-wavefunctions for    ,     states
14
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(  

    
 ) 
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  (      )] 

 

            (16) 
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 For these states    
  

√ 
(       ) for      .Also, for    

 
, we believe there was a typo in [4], so we 

include a factor of one half in the exponential power, but including this value does not leave a normalized state.   
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We determined from looking at a graph of the energy splitting in [1] that the splittings look, at a basic 

level, as either a harmonic oscillator potential or a Coulomb (or short range) potential. From this we 

sought to include a short range perturbation into the Hamiltonian given by       ∑
 

   
   , where     is 

the distance between the     and     quark, and   is the fine structure constant. Since we are looking at 

symmetric product states (i.e. the product of the spin and spatial sub-wavefunctions are symmetric) we 

can assume that        
 

   
   √  (

 

 
). Then, with our spatial sub-wavefunctions combined with 

the spin sub-wavefunctions described above, we can calculate the energy correction of this perturbative 

Hamiltonian. By constructing an integral table of various powers of   and   we were able to find the 

energy corrections listed below. 

 

State 
Energy Correction

15
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√  
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√  
 

|            
 

 
⟩ 

      
  

√  
 

 

These energy corrections qualitatively match the splittings found in [1]; one state, the  

|   
 

 
        

 

 
⟩ has an energy much lower than the other states, and the difference between the 
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 For the two last states, there are no specified total angular momentum values because these energy corrections 

hold for any of the possible total angular momentum values. For the last state, the wavefunction was not properly 

normalized which requires a factor of 
 

 
 correction. With the correction, the larger value is the energy correction 

    
  

√  
; without the correction, the smaller correction would occur, which is listed above. 



  
 

 
 states is produced. The main qualitative disparity is the way two states (one with   

 

 
 , another 

with   
 

 
) have their energy raised slightly higher than the other states, which does not show up from 

just the harmonic oscillator and the Coulomb perturbation, so other interactions must be included. 

 

7. Spin-Spin Interaction 

To model the interaction of the spin of each baryon on the other two, we treat each of the interaction 

between particles similarly to how the spin of an electron interacts with the spin of a proton. The spin 

interaction of protons and electrons is based on the interactions between their magnetic moments    and 

  , since these are proportional to their respective spins. Then the spin interactions of a proton and an 

electron can be modeled as      ( )  ̅̅ ̅    ̅̅ ̅   ( )  ̅    ̅, where the function  ( ) depends on the 

relative distance of the proton and electron  , and also contains the proportionality constants between the 

spin and the magnetic moments.  

We then extend this to the three baryons by taking: 

    ∑ (  ̅    ̅)      (   ), 

Where    (   ), is a function of the relative distance between the three particles. If we take     to be 

independent of the relative position,    (   )     , we can take        ∑ (  ̅    ̅)   . We can then 

calculate the expectation values for     for a  wavefunction | ⟩for the baryons: 

〈   〉  ⟨ |   | ⟩ 

    ⟨ |(∑(  ̅̅ ̅    ̅̅ ̅)

   

) | ⟩ 

Then note that for the total spin operator   ̅̅ ̅ and the spin squared operator for each individual particle   
  

that: 

  
 ̅̅ ̅̅̅  ∑   

 

 

   

   ̅    ̅    ̅    ̅    ̅    ̅  ∑(  ̅̅ ̅    ̅̅ ̅)

   

  

We then replace this is the above equation: 

〈   〉     ⟨ | (  
 ̅̅ ̅̅̅  ∑   

 

 

   

) | ⟩  

Then, for any wavefunction:   
    (    )  

 

 
(
 

 
  )  

 

 
 since the spin of every baryon is always 

 

 
, 

so this expectation value is only a function of the total spin eigenvalue of | ⟩  We only have two values 

for the total spin: 
 

 
 or 

 

 
. For the states with total spin 

 

 
, 〈   〉   

 

 
    and for states with total spin 

 

 
, , 



〈   〉  
 

 
   . So a radially independent spin-spin interaction shifts some states up and some states down 

by the same value, which does break the degeneracy but not close to how the splittings are from [1]. This 

sort of interaction does not contribute qualitatively to the energy splittings found from the Coulomb 

potential, so we factored in a radial dependent spin-spin interaction using a 3-D Dirac delta function: 

       ∑   
   (   )  ̅    ̅      (   )  ̅    ̅  

 

 √ 
  ( )    (17) 

When then performed the energy correction calculations on this perturbative Hamiltonian and got the 

energy corrections below.  

 

State 
Energy Correction 
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|            
 

 
⟩ 
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|            
 

 
⟩ 

 

 

 

  

 

√ 

  

     
 

 

We determined a value for the constant   by comparing this spin-spin interaction with the Hamiltonian of 

a hydrogen atom with the same spin-spin interaction and extending it to the three particle system. We 

found that   
   

 

  

 
 . We also obtained a value for   by estimating a value for    from the value used 

by light quark systems. We took   √   √          , so   (    )           for a light 

quark mass  . Then to find a value of   around the         energy levels we were expecting, we must 

have      , or about    of the energy of the levels we are studying, which is very small. Even using 

these values for, say, the energy of the state  
  

  

 

√ 

  

            , which is very small, so we concluded 

that the spin-spin interaction must not be large.  

 

 

 

 



8. Spin Orbit Interaction   

To include the spin orbit interaction, we use a radial dependent perturbative Hamiltonian: 

        ∑
 

   
 (       )    

 

 √ 

 

  (     )   (18) 

Which we assume because of the symmetry of the spin and spatial sub-wavefunction symmetries. Using 

the expansion of      , we can rewrite       
 

 
[  

    
    

 ]. Using the fact that the baryons are 

indistinguishable and that    is the total angular momentum projected along the   axis, which is the 

combination of the angular momentum of two out of the three quarks, we can subtract off the spin of the 

third quark to get from the total angular momentum   to obtain a formula for   : 

  
  (    )

             
     

 

 
      

  

We used this formula to compute the energy corrections for the |   
 

 
         

 

 
⟩ state, and found an 

energy correction of 〈   〉  
 

 √ 

  

√ 
. and for the |   

 

 
         

 

 
⟩ state we found an energy 

correction of 〈   〉   
  

  √ 

  

√ 
.. For the other two states (with   

 

 
 
 

 
) and the states with     we 

need to rewrite    so that the quark momentums can be added as vectors instead of being assumed to be 

along the same axis (as we did for these two cases). In order to calculate    for the other states, we use: 

         
 

 
[
 

 
   

 

 
    

 

 
     

    
    

 ]     (19) 

This formula may not be correct, so we do not have values for the energy correction due to the spin orbit 

interaction for the other states. However, we do have a formula to relate the constant   to  : 

  
 

   
   

So   
 

  
 . 

 

Conclusion 

 From our included interactions, our overall Hamiltonian looks like: 

                                 (20) 

Where the overall kinetic energy term has been removed because we worked from the center of mass 

reference frame. From the additional interactions we included, the most successful perturbation, that is, 

the perturbation that produced the most qualitatively accurate splittings is the Coulomb potential. This 

perturbation “pushed” the energy value of the|        
 

 
⟩ state down further than any other state, and 



also pushed the energy value of the |        
 

 
⟩ state down to create the smaller splitting seen 

between the two   
 

 
 states. Although these two splittings are qualitatively produced by the Coulomb 

potential, this perturbation is not completely the cause for the splitting between the   
 

 
 and   

 

 
 states, 

which would be between the |        
 

 
⟩ and |        

 

 
⟩ states, and the complete splitting of 

these two levels must be in part due to the spin-dependent interaction terms.  

We also determined that the spin-spin interaction should be a small effect by finding an estimate for  , 

which would correspond to the relatively small splittings seen in the QCD results. However, the estimate 

we found is much too small to match the splitting seen in the QCD, that is, to have one of the   
 

 
 and 

one of the   
 

 
 have higher energies than the other states with the same total angular momentum. The 

ratio between the two energy corrections for the |        
 

 
⟩ and |        

 

 
⟩ states is 

 

 
 though so 

in future research, a better estimate for   may produce better energy correction values, and choosing the 

sign of   may contribute to labeling which states are “higher” and which are “lower” in terms of their 

energy values.  

The potential models, then, do give some insight into the system; the effect of the Coulomb potential 

dominates the how the quarks interact, and the spin-spin and spin-orbit interactions should give rise to the 

additional splitting recorded by Meinel [1]. The Difference between the results of [2] and [3], then, seem 

to result from the choice of the parameters of the potentials; Silvestre-Brac chose a “flatter” short range 

interaction as      , whereas Roberts and Pervin chose a linear short range interaction, which may be the 

cause of the disparity in their results. The “flatness” of the potential used may be tied to the low estimate 

of   because of the mass dependence of the potential. For Monomial potentials (that is, potentials which 

are proportional to a fixed single power of the separation coordinate, in our case  , in coordinate space), 

there is a predictable energy splitting due to the mass of the quarks involved. The scaling of something 

between a pure linear and a pure harmonic oscillator potential is found in the QCD calculations. Silvestre-

Brac, with a        short range potential term, used something in between those two potentials, which 

could have approximated the mass scaling well enough to produce results closer to the QCD study. 

Roberts and Pervin used a linear potential, which may have skewed the mass scaling. Since this skewed 

scaling would be more noticeable with heavier particles, using bottom quarks may have resulted in their 

low energy values (since there values are less than the other two studies by about the mass of a bottom 

quark).  

In future research then, it may be best to begin with a flatter potential, even if the energy spectrum must 

be calculated numerically because the QCD results suggest a potential in between the Harmonic 



Oscillator and the Coulomb potential may best fit the system. In order to determine other insights a 

potential model could give, we would need to explore and possibly correct the estimate of  ,  and figure 

out the normalization for the|            
 

 
⟩ wavefunction so to fully determine the energy corrections 

due to the spin-spin interaction. 
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