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Abstract

The goal of this paper is to explore the efficacy of Magnetic Hamiltonian Monte

Carlo (MHMC) on a Quantum Harmonic Oscillator and sine-Gordon model. The

traditional method to solve Lattice Quantum Chromodynamics (QCD), and other

high-dimensional integrals, Hamiltonian Monte Carlo (HMC), gets stuck when ex-

ploring theses distribution and fails to sample from the entire distribution. MHMC,

when initial proposed as an alternative to HMC, showed an ability to sample from all

regions of an action rather than getting bogged down in singular results as HMC tends

to do. In this paper we apply MHMC to a simple one-dimension model, Quantum

Harmonic Oscillator, and a more complicated two-dimensional sine-Gordon model

and compare its results with HMC. In our tests, on both the sine-Gordon and Quan-

tum Mechanical models, MHMC failed to show any improvement on HMC’s sampling

and often time proved to less efficient than HMC when performing these calculations.



Chapter 1

Introduction

In Lattice Quantum Chromodynamics, calculating complex models requires in-

tense, multidimensional integrals that prove difficult to solve. The canonical method

for solving these integrals is known as Hamiltonian Monte Carlo (HMC). HMC, in

theory, samples from and explores the entire distribution. In practice, HMC often

fails to give a full description of the distribution and gets stuck in specific regions.

This is due to computational limits. Given infinite computing power and infinite

time, HMC will sample from the entire distribution. In 2017, a new non-canonical

algorithm known as Magnetic Hamiltonian Monte Carlo (MHMC) was proposed as

an alternative to HMC. [2] In this paper MHMC showed itself to be more efficient

when sampling from a weighted Gaussian mixture and the FitzHugh-Nagumo model.

In this we explain both the HMC and MHMC algorithms before applying them to a

simple one-dimensional Quantum Anharmonic Oscillator and the sine-Gordon model.

To this end, we replicated MHMC algorithm and corresponding leapfrog integrator.

We then compared MHMC to HMC for the one-dimensional case as well as the two-

dimensional case using lattices of different sizes. In particular we are interesting in

comparing the autocorrelation times between the two algorithms in an attempt to see

differences in efficiency.
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Chapter 2

Theory

2.1 Monte Carlo

Monte Carlo is method through which a probability distribution is randomly

sampled to approximate a desired result. This algorithm category allows for com-

plicated path integrals to be approximated numerically where analytic solutions fail.

Essentially, Monte Carlo proposes a random point and decides the likely hood of the

that point being a part of the distribution. By sampling a large number of points,

the distribution, in our case a path integral, can be approximated. The more points

sample, the more accurate the description of the path integral.

2.1.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo is a method through which the sampling is no longer

completely random. As outlined in ”A Simple Introduction to Markov Chain Monte-

Carlo sampling”, rather than sampling a completely new position each time, Markov

Chain Monte Carlo proposes a new position based off of the previous position.[4]

The only possible new positions are thus the neighboring positions rather than any

position within the bounds of the experiment. This trail of samples, i.e. neighboring

2



point, are thus described as a Markov Chain. It is important to note, that the Markov

Chain does not discriminate on direction. Instead each neighbor is equally probable,

resulting in a random walk around the distribution. What Monte Carlo does with the

Markov chains is determine whether the proposed point is part of the distribution or

not. If the point is part of the distribution, it is accepted, and the random walking is

repeated. However, if rejected, the Markov Chain process is repeated until a neighbor

is proposed that is accepted. For the purposes of this experiment, we use a Metropolis-

Hastings accept reject to discriminate between points.

2.1.2 Metropolis-Hasting Accept/Reject Step

The accept/reject step is the same for both HMC and MHMC. As described in

Lattice QCD for Novices, f the change in the Hamiltonian, i.e. the energy, is negative,

then the new point is accepted.[1] If the change in energy is non-negative, then we

raise e to the negative change in the Hamiltonian (e−dH) and compare this term to a

random Gaussian number in the range of 0 to 1. If e−dH is greater than the random

Gaussian, the new value of x is accepted. However, if the opposite is true, the initial x

is refused with a new random disturbance. Therefore, the larger the change in energy

is, the less likely it is to be accepted in this step. The only variation between HMC

and MHMC during this process is how MHMC handles the G-matrix, which is unique

to MHMC, and the momenta. HMC only returns either xnew or xinitial through this

process. MHMC accept/reject returns both the position and the momenta for all

cases. Additionally, in cases where the xnew is rejected, the sign of the G matrix and

momenta are flipped before the process repeats itself again.

3



2.2 Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo algorithm (HMC) is a variation of Markov Chain

Monte Carlo where the changes in energy, as described by Hamiltonian dynamics, are

used to define the accept reject criteria. Rather than just randomly sampling position,

HMC uses a random momentum to disturb the current configuration before perform-

ing a Metropolis-Hasting accept/reject step. This momentum term is independent

of position, as it is randomly generated, but of equal size to the position term. The

Hamiltonian is the sum of the kinetic and potential energies of the particle in ques-

tion. It follows, that by changing the momentum, we can update the Hamiltonian to

represent this change. In simple cases, like the one-dimensional Quantum Harmonic

Oscillator, this is easily done analytically. However, as the dimensions of the integral

increase, we can no longer solve it analytically and instead must numerically evaluate

this transition using leapfrog integration. The HMC algorithm in discrete terms is as

follows.

Algorithm 1: Hamiltonian Monte Carlo

Input: H, L, ε
Initialization(x0,p0)
for n = 1,....,N do

Refresh pi−1 = N(0, I)
Calculate(xn,pn) = LF(H, L, ε, xn−1,pn−1)
if Unif([0,1]) < min(1, exp(H(xn−1,pn−1)-H(xn,pn) then

Return (xn,pn)
else

Return (xn−1,pn−1,)
end

In this algorithm, H is the Hamiltonian, L is the lattice and ε is the step size

the leapfrog integrator uses.
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2.2.1 Hamiltonian Monte Carlo Leapfrog Integrator

In general leapfrog integration is a method to numerically integrate differential equa-

tions. For HMC the position X is a function of P whereas P is a function of X. The

leapfrog integrator takes advantage of this relationship by leapfrogging back and for

forth between updating x and p over discrete number of steps. Given a randomized p,

the algorithm first updates this p using a half step of the force according to x. Then,

it updates x with the change in p using a full step. The process is repeated with a

full step update of p this time. After a number of steps have been completed p is

finally updated with a half step update which ensures an integer number of steps have

taken place. The output of the leapfrog algorithm is a new momentum and position

coordinate from which we can recalculate the Hamiltonian in order to complete the

Metropolis-Hastings accept/reject step. The discrete description of this algorithm is

as follows:

Algorithm 2: Hamiltonian Monte Carlo Leapfrog Integrator

Input: x0, p0 ε
pi = p0 + 1

2
F (x0)ε

for n = 1,....,1
ε
do

xn = xn−1 + pε
pn = pn−1 + F (xn)ε

end
xn = xn−1 + pε
pn = pn−1 + 1

2
F (xn)ε

Return (pn, xn)

In this description, F(x) is the force calculated from the current x and ε is

the step size. Equations 2 and 3 arr repeated 1
ε

times in order to complete a the

full integration. The smaller ε is, the more intermediate steps are taken. A python

implementation of this algorithm is in A.1.
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2.3 Magnetic Hamiltonian Monte Carlo

The overall MHMC Algorithm follows the same structure of HMC but adds an

additional term, G, into the mix. G is an invertible antisymmetric matrix of size L2.

G is a so called magnetic field term which introduces a curl into the Hamiltonian

dynamics. The idea being that this additional term will push any sampling algorithm

over any topographical features that otherwise would result in the algorithm getting

stuck. However, there is not clear ideal G term. Instead, the only constraints are that

it is invertible and antisymmetric. While this does give great leeway when it comes

to MHMC implementation, it also means success or failure of the algorithm could be

dependent on an inefficient G matrix.

Like HMC, MHMC uses a Metropolis-Hastings accept reject step. However, the

difference, outside of the leapfrog integrator, is that acceptance flips the signs of both

G and p when returning those values. Algorithm 3 details MHMC in greater detail.

Algorithm 3: Magnetic Hamiltonian Monte Carlo

Input: H, G, L, ε
Initialization(x0,p0)
for n = 1,....,N do

Refresh pi−1 = N(0, I)
Calculate(xn,pn) = LF(H, G, L, ε, xn−1,pn−1, Gn−1)
Flip momentum (xn,pn) →(xn,-pn)
Set Gn ←-Gn−1

end
if Unif([0,1]) < min(1, exp(H(xn−1,pn−1)-H(xn,pn) then

Return (xn,pn, Gn)
else

Return (xn−1,pn−1,Gn−1)

2.3.1 MHMC Leapfrog Integrator

The MHMC leapfrog integrator [2] follows much the same form as the HMC

leapfrog integrator. Like HMC LF, MHMC LF is book ended by half step updates
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of the momentum. These momentum updates are the exact same as the canonical

LF. However, in the internal full step updates, position and momenta updates are

different due to the addition of the G matrix. The position is updated by multiplying

the exponential of G minus an identity matrix equal in size to G by the momentum.

This result is the multiplied by the inverse of G before being added to the current x

value. Additionally, momentum is multiplied by the G exponential and then updated

again using the canonical momentum update only this time in a full step. Like the

canonical example, it finishes with a half step update of momentum. The discrete

description of the MHMC LF is as follows:

Algorithm 4: Magnetic Hamiltonian Monte Carlo Leapfrog Integrator

Input: x0, p0, G, ε
pn = p0 + 1

2
F (x0)ε

for n = 1,....,1
ε
do

xn = xn−1 +G−1
[
(eGε − I)(pi)

]
pn = eGεpi−1

pn = pn−1 + F (xn)ε
end

xn = xn−1 +G−1
[
(eGε − I)(pi)

]
pn = eGεpi−1

pn = pn−1 + 1
2
F (xn)ε

Return (pn, xn)

Of note, if G were set to 0, then MHMC LF would be the exact same as HMC

LF. An implementation of this algorithm for both the one dimensional and two di-

mensional case is in A.2 and A.3.

2.4 Quantum Harmonic Oscillator

A simple model where HMC can be seen to get stuck is the Quantum Harmonic

Oscillator. This model is relatively simple to implement and also easy to solve an-

alytically rather than through Monte Carlo. For that reason, it is the perfect first

test to study the efficacy of MHMC. Not only can we see clear differences in the two

algorithms, but we can also check the correctness for each algorithm analytically. The
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Hamiltonian of the An-harmonic Oscillator is that of the Quantum Harmonic Oscilla-

tor with an additional quartic term gx4 where g is a constant. The total Hamiltonian

of the QM model is thus

H =
p2

2m
+ Ux+ gx4 (2.1)

Where p is the momentum, ω is the frequency, m is the mass and x is the position.

In order to calculate the QM Action, we first have to do a Legendre transformation

of the Hamiltonian. The resultant Lagrangian,

L =
p(t)2

2
+ U(x(t)) (2.2)

, can then easily be plugged in and integrated over time to calculate the QM action.

The action consequently, is

S =

∫ t2

t1

Ldt =

∫ t2

t1

p(t)2

2
+ U(x(t))dt (2.3)

However, in order to use HMC and MHMC to explore this model, we need a discrete

form of the force that can be used by the leapfrog algorithms. The force is the

derivative of the action with respect to x. Additionally, the Hamiltonian can also be

described as the a the combination of the kinetic energy and the action. The easiest

way to do this is to take a single step of the integral and describe its effect on the

Lagrangian Rather than going from t1 to t2 we can consider the integral as a series

of small integrals from ti to ti+1. At that point, we can approximate this individual

step as ∫ ti+1

ti

Ldt =
m

2
xi+1 − x2i +

1

2
V (xi+1) + V (xi) (2.4)

With this approximation in hand, we then describe the entire action as a sum of

discrete steps ranging from 0 to N-1. This approximation, given the QM model,

looks as follows:

S(x) =
∑

((
1

2
ω2 + 1)x2i +

1

24
gxi

4 − xi+1 ∗ xi) (2.5)
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The force is then just the derivative of the potential as defined by the action in

terms of x, or

F =
δU

δx
= xi+1 + xi−1 − ω2x+ 2x− 1

6
gx3 (2.6)

We use this derivative to make small changes to p as outlined in the section 2.2.1

and 2.3.1.

2.5 sine-Gordon

The sine-Gordon (SG) model is a two dimensional model characterized by a

nonlinear periodic term that makes it difficult to deal with using HMC. While it

does not stuck like QM, its somewhat longer autocorrelation time makes it a perfect

candidate to compare MHMC and HMC. If MHMC is more efficient that HMC we

should see a clear difference in the in their autocorrelation times.

The potential energy of the can be described as the a quadratic of the variable

x, in this case position, over both possible indices.

VSG =
1

T

[∑
i,j

|xi − xj|2−
∑
i

cos(xi)

]
(2.7)

If we considered the action in a similar way to the QM, then the action is that

potential’s quadratic expanded to take into account the neighbors for the interior

terms. Consequently the action samples from not just the current position, but in

the general region. The action, through this expansion is

SSG =
1

T

[∑
2x2(i,j) − x(i+1,j)x(i,j) − x(i,j+1)x(i,j) −

∑
cos(x(i,j))

]
(2.8)

It follows that the force would be

F =
1

T

[
−4x(i,j) + x(i+1,j) + x(i−1,j) + x(i,j+1) + x(i,j−1) − sin(x(i,j))

]
(2.9)

9



due the force as the action’s derivative. Of course, instead of just sampling in the +i

or +j direction, the force takes into account all possible neighbors which is seen in

the above equation. The Hamiltonian is the sum of the kinetic energy and the action.

The SG Hamiltonian is

HSG =
∑ p2

2
+

1

T

[∑
2x2(i,j) − x(i+1,j)x(i,j) − x(i,j+1)x(i,j) −

∑
cos(x(i,j))

]
(2.10)

2.6 Autocorrelation

Autocorrelation refers to the correlation of a current series with a lagged, or

delayed version of that series. In other words, it shows how similar a given results

and lagged version of that result is. For example an autocorrelation of 1 means that

there is a perfect positive correlation. A positive autocorrelation in general means

that an increase in the current series leads to an increase in the lagged series. On the

flip side, negative autocorrelation means that an increase in the current time series

leads to a decrease in the lagged series. Another way to think about this is positive

autocorrelation means the two series mirror each others movement whereas a negative

autocorrelation means the two series diverge from each other. An autocorrelation of

0, means that there is no relationship between the current series and the time lagged

series. Therefore an increase in the current series does not correlate to anything

happening to the time lagged series

For our research, we are interested in seeing how quickly the autocorrelation

approaches 0 for both models and algorithms. The autocorrelation time roughly

equivalent to the MCMC convergence time. MCMC convergence occurs ”when the

generated Markov chain converges in distribution to the posterior distribution of in-

terest.” [3] Unfortunately calculating MCMC convergence is extremely difficult which

is why we use autocorrelation time as an approximation. Algorithms that create large

10



autocorrelation values take longer, and more iterations, to properly explore the en-

tire distribution. Therefore, looking at the changing autocorrelation values gives us

an approximate look at each algorithms efficiency when traversing different distribu-

tions.The quicker the autocorrealtion gets to zero, the faster the algorithm is.

The formula for autocorrlation itself is well documented and is

A =

∑n−T
i=T+1(xi−T − x̄)(xi − x̄)∑n

i=1(x− i− x̄)2
(2.11)

where T equals the lag time, n = number of observations in the series, xi is the

value of x at position i, and x̄ is the mean of the entire series. If we then graph

this function over the all our results, we will be able to understand how quickly our

MCMC algorithm’s convergence time. The standard error for autocorrelation is

SE =

√
1 + 2

∑T−1
m=1A

2
m

n
(2.12)

where T is the lag, Am is the autocorrelation of lag m and n is the number of ob-

servations. There is an example of an autocorrelation implementation in Python in

B.1.
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Chapter 3

Experiments

For the purposes of this research, we constructed lattices using python that we then

could apply both MHMC and HMC and compare. That entailed one-dimensional

lattice for the QM model and a two-dimensional lattice for SG. In order to test the

validity of the both models and both algorithms we conducted both reversibility tests

and ε2 tests. After proving the validity of out implementation of QM, SG, HMC, and

MHMC, we move on to comparing HMC and MHMC across both models. For these

test, we are particularly interested in the autocorrelation for both the one-dimensional

case and the two-dimensional case. Additionally, for QM, we can plot the results of

each loop through HMC and MHMC and visually see where these algorithms get

stuck. Finally, we also want to compare the

3.1 ε2 Test

The epsilon squared test checks the correctness of the leapfrog integrator. In-

stead of using a single value for epsilon, the epsilon squared test compares who changes

in epsilon change the Hamiltonian calculation. Both the HMC LF and MHMC LF

have O(ε2) error scaling. Therefore, if the leapfrog integrators are working correctly,

larger values of ε2 should result in larger changes in the Hamiltonian in a linear fash-

ion. The results of these trials for both the one dimensional and two-dimensional
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cases for both HMC and MHMC can be seen below.

(a) HMC (b) MHMC

Figure 3.1: QM ε2 Test

(a) HMC (b) MHMC

Figure 3.2: SG ε2 Test

As we can see in 3.1 and 3.2, all combinations of SG, QM, HMC, and MHMC

follow a linear ε2 relationship, thus exhibiting the correctness of the leapfrog integra-

tors.

3.2 Reversibility Tests

One of the key tenets of Hamiltonian Dynamics is that the energy is conserved.

For both the Quantum Harmonic Oscillator and Sine Gordon models, that means that

a change in the Hamiltonian is reversible. A reversibility test works by calculating

13



a new Hamiltonian after generating a random momentum, then recalculating the

Hamiltonian with the sing of the momentum flipped, essentially retracing the path

of the first calculating. If reversing the momentum results in the initial Hamiltonian,

then energy is conserved in these calculations.

HMC MHMC
H0 1061.678357793096 1107.9416409103592
Hnew 1061.6953804315328 1107.9591699410007
Hreversed 1061.678357793096 1107.941640910141
Hreversed - H0 0.0 2.1827872842550278e-10

Table 3.1: QM Reversibility Tests

HMC MHMC
H0 5.549393878734056 6.967247948147463
Hnew 5.549404649235499 6.967278021495622
Hreversed 5.549393878734056 6.96724794814713
Hreversed - H0 0.0 -3.3306690738754696e-13

Table 3.2: SG Reversibility Tests

As we can see in 3.1 and 3.2, all combinations of QM, SG, HMC, and MHMC

converse energy. One interesting thing of note, perhaps due to the float storage

limitations of python, but MHMC reversibility maintains a very small error term on

the magnetic e-10.

3.3 QM Tests

In order to test QM using HMC and MHMC we first need to describe. For these

tests we use the same parameter for both HMC and MHMC. Due to computational

limitations the lattice size is 128. Additionally, the only configuration where either

MHMC or HMC get stuck is when ω is negative. If omega is positive, both MHMC

and HMC sample all possible results equally. The quartic scalar, g, was set to 1.
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The step size, ε was set to 0.01 with the over trajectory set to 1 as well. This would

result in the leapfrog integrator taking 100 steps in its calculations. In order to full

run a Monte Carlo simulation, we first have to essentially warm up the algorithm but

running it a set number of times in order to work out any outlier that might pop

up in the initial few iterations. For these tests, the number of warm up loops was

100. Additionally, we ran each algorithm 1000 while recording the X output of the

HMC and MHMC respectively. From these results we can calculated autocorrelation

time, compare the magnitude of the outputs and finally directly compare the outputs

plotted on the lattice itself. Finally we need a maximum lag in order to calculate the

autocorrealtion. For these test we used a maximum lag value of 100.

(a) HMC (b) MHMC

Figure 3.3: QM Autocorrelation

The ideal autocorrelation result is exponential decay. Both HMC and MHMC

initially begin as exponential decay. However, the closer the MHMC Autocorrelation

gets to 0, the less steep the curve becomes. In fact, MHMC autocorrelation never

fully gets down to zero under these parameters. Thus, when directly comparing HMC

and MHMC, we can see that HMC actually performs better in the case of the QM

model.
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Another test to compare the two algorithms is a looking at the sum of
∑
X2
i

for each iteration of the respective algorithm. While not a measure of actual results,

by looking at
∑
X2
i we can compare the magnitude of x for HMC and MHMC. As

we can see in 3.4 both HMC and MHMC and calculate essential the same value for∑
X2
i . This result further supports the correctness of MHMC in application and also

tells us that we are comparing apples to apples in these experiments.

(a) HMC (b) MHMC

Figure 3.4: QM X2 Results

The final test in comparing HMC and MHMC in the one-dimensional case is

to graph the value of x on its respective lattice point for every iteration of our test.

That is to say plot (L,x) for all L. If we then plot these results for each test, we can

then see if either algorithm gets stuck in the QM model.

The result of these tests, 3.5 clearly shows that both HMC and MHMC get

suck in every pass through the algorithm. Ideally, we would see continuous sampling

across both minimums. However, that is not the case. If anything, HMC performs

better than MHMC in this test as well.
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(a) HMC (b) MHMC

Figure 3.5: QM Results

3.4 sine-Gordon Tests

For the sine-Gordon model, the observable we are interesting in is the variance.

Due to its two dimensional nature, any real attempt to plot x will result in something

unclear. However, the variance allows us to compare the results of HMC with MHMC.

However, the most important results is the autocorrelation time. If MHMC is more

efficient than HMC, there should be a clear difference in their autocorrelation time.

In testing MHMC on the SG model, we tried three different G matrices to in

an attempt see if there is any discernible difference when it comes to the layout of G

when using MHMC. Due to computational limitations of these calculations, we tested

all G1, G2, and G3 on a small 4x4 lattice. However, we only tested G3 on a 16x16

and 32x32 to see if scaling showed marked differences between HMC and MHMC.

For the sine-Gordon model we one again used the same parameters when testing

HMC and MHMC.For out thermalization runs, we loops each algorithm 100 times

before saving 1000 runs for analysis. Additionally, all tests used ε of 0.01. The SG

model also requires a temperature component, T. For these tests, we settled on T =

17



2. Finally we need a maximum lag in order to calculate the autocorrealtion. Like

with QM, we used a maximum lag value of 100.

3.4.1 4x4 Lattice

HMC

As oppposed to MHMC, HMC is easily scalable both in lattice size and dimen-

sion. For this first test using SG, we are using a small 4x4 lattice.

(a) Autocorrelation (b) Variance

Figure 3.6: SG HMC Small Lattice

As we can see in 3.6a, HMC’s autocorrelation converges on 0 extremely quickly.

This shows that is working efficiently at this small scale despite two-dimensional

lattice. Additionally, in 3.6b, we can see that these results are valid due to the mean

variance of x being centered around 0.5.

MHMC G1

As we’ve discussed perviosly, the G matrix is an L2xL2. We can then represent

this matrix in simpler form as an LxL matrix where each matrix element is another

LxL matrix. This then allows us to approach generating this matrix as a block matrix.

The G1 matrix is thus
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G1 =


B B 0 B
B B B 0
0 B B B
B 0 B B


where B is an antisymmetic invertible matrix comprised of off two off diagonal identity

matrices of opposites signs or:

B =


0 −1 0 0
1 0 −1 0
0 1 0 −1
0 0 1 0



(a) Autocorrelation (b) Variance

Figure 3.7: SG MHMC G1 4x4 Lattice

As we can see in 3.7a, MHMC does not show any improvement on HMC in

terms of autocorrelation time and the speed at which it converges to zero. In fact,

when compared to 3.6a, MHMC performs significantly worse.
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MHMC G2

The second G matrix tried, G2, is a slightly less complicated version of G1 where

only only the middle diagonal elements are filled, leaving rest of the matrix empty.

G2 =


B B 0 0
B B B 0
0 B B B
0 0 B B


For G2 the interior matrix elements, B, are the same as in G1 thus maintaining G2’s

invertible and antisymmetric properties.

The G2 using a small lattice results are similar to that of the G1 matrix. By

extension both tests fail to improve upon the HMC alorithm. When comparing au-

tocorrelation time, HMC, 3.6a shows a much quicker convergence in autocorrenaltion

time when compared to 3.8a. In comparing the variances HMC and MHMC, 3.6b

and 3.8b respively, both nicely oscillate around a mean of 0.5, thus showing that both

HMC and MHMC using the G2 matrix are calculating similar distributions. However,

HMC is simply more efficient than MHMC using G2.

(a) Autocorrelation (b) Variance

Figure 3.8: SG MHMC G2 4x4 Lattice

As we can see in 3.8a, MHMC does not show any improvement on HMC in terms
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of autocorrelation time and the speed at which it converges to zero. However, its

autocorrelation distribution does show a minor improvement when compared to the

3.7a. This suggests that changes in G do have positive effects when it comes to

MCMC convergence.

MHMC G3

For the G3 matrix we took a slightly different approach in choosing the matrix.

Rather than, using variation of the identity matrix only inside each matrix element.

We constructed a matrix where the larger L2,L2 structure is the same as the B matrix

outlined above. The middle diagonal was then filled with B matrices as well. G3, as

a 4x4 matrix, is

G3 =


B −A 0 0
A B −A 0
0 A B −A
0 0 A B



where

A =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1



3.9a shows that G3 performs the worst out of all three G matrices. Once again

confirming our suspicion that an there is an ideal G matrix. Like all the calculations

so far, the variance for each iteration oscillates around a mean of approximately 0.5

which is expected.

For the larger lattice tests, detailed below, we choose to scale G3 as use it in the

MHMC calculations. Due to its poor performance in the 4x4 lattice, it has the most
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(a) Autocorrelation (b) Variance

Figure 3.9: SG MHMC G3 4x4 Lattice

room for improvement and thus might point to whether lattice size changes MHMC

efficiency in comparison to HMC.

3.4.2 16x16 Lattice

HMC

HMC is very easily scaled to larger lattice sizes. For this test we called up the

lattice size to where L = 16. With this larger lattice, 3.10a shows a slower convergence

to 0 than in the smaller lattice, 3.6a. On the other hand the variance for iteration

through the lattice stayed essentially the same as shown by 3.10b and 3.6b.

(a) Autocorrelation (b) Variance

Figure 3.10: SG HMC 16x16 Lattice Tests
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MHMC

MHMC, in comparison, shows a similarly slow convergence in autocorrelation

time as seen in3.11a . At least for the 16x16 Lattice using G3, MHMC does not

show any advantage over HMC in terms of convergence time. On the other hand,

both algorithms, despite their less than stellar autocorrelation times, compute the

same variance, showing once again that the collocations are correct, but simply not

efficient.

(a) Autocorrelation (b) Variance

Figure 3.11: SG MHMC G3 16x16 Lattice Tests

3.4.3 32x32 Lattice

The final test that we compute was comparing MHMC using G3 to HMC on a

much larger 32x32 sized lattice. This calculation takes multiple minutes with compu-

tational power we had available at the term and served as a sort of upper boundary

in Lattice size. Any attempts using Lattices larger than this resulted in computations

taking many hours with no results.
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HMC

For HMC, seen in 3.12, we see a rather consistent autocorrelation plot that

shows it swifty approaching zero as the lag increases. Additionally the variance once

against oscillates around the mean as expect.

(a) Autocorrelation (b) Variance

Figure 3.12: SG HMC 32x32 Lattice Tests

MHMC

MHMC (3.13), using G3, shows what appears to be slight improvemnt on its previous

results for this larger lattice. However, the lag increases we see rather large spikes in

autocorrelation time where HMC does not. This suggests that it is still less efficient

than HMC at this large lattice size. As ever, the variance oscillates nicely around the

mean as we would expect.
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(a) Autocorrelation (b) Variance

Figure 3.13: SG MHMC G3 32x32 Lattice Tests

25



Chapter 4

Conclusion/Outlook

While an interesting proposal, MHMC fails to provide any increase in efficiency

in our exploration of the alogrithm. In the one-dimensional case, 3.5, both HMC

MHMC get stuck and fail to smaple the entire distribution. Additioanlly, when

looking at the autocorrelation function in particular 3.3, HMC shows itself to be

more efficient that MHMC. This result continues when testing MHMC on SG. HMC

outperforms MHMC regardless of lattice size or the chosen G matrix as seen in 3.7a,

3.8a, 3.9a, 3.11a, and 3.13a. One caveat to this result is the broad definition of the G

matrix. While we tested three different G matrices in the SG case, the only restrictions

these for these matrices are that they are invertible and anti-symmetric. As the lattice

size increases, the number of possible G matrices increases. For our experiments we

were limited in computational power, and thus had to use relatively small matrices

for the SG tests. Consequently, MHMC’s efficiency could scale differently to HMC

when the lattice gets large. Additionally, our computational limitations meant that

we only tested MHMC on a one-dimensional or two-dimensional model. Just like how

it could scale differently with lattice size, MHMC might prove its self more efficient

as the number of dimensions increase. Finnaly, it is not unimaginable that there is a

G matrix for a large lattice that makes MHMC more efficient than HMC. This would

perhaps require some form of nueral network to generate a more efficient G matrix.
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Appendix A

Example Leapfrog Integrators

These are examples of the integrators used in for this research project. Of note,

the force function is model dependent.

A.1 HMC Integrator

The following is the python code which computes the leapfrog integration for the
Hamiltonian Monte Carlo algorithm. This could also be described as the canonical
leapfrog integrator. This works for both the one-dimensional and two dimensional
case since p and x have the same dimensions.

/***********************************************************/

p = p + 0.5*force(x)*eps)

for t in range(1,nsteps):

x = x + p*eps

p = p + force(x)*eps)

x = x + p*eps

p = p + 0.5*force(x)*eps)

A.2 MHMC One-Dimensional Integrator

The MHMC leapfrog is more complicated. However, the clear combination
between new terms containing the G matrix and canonical calculations can be seen.
Despite G being an LxL matrix, no reshaping needs to happen for the one-dimensional
case due to the nature of the numpy.dot() function.

/***********************************************************/

G_exp = expm(G*eps)

G_inv = inv(G)

p = p = p + 0.5*force(x)*eps

for n in range(1, self.nsteps):
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x = x + np.dot(G_inv,np.dot(G_exp-np.identity(len(G)),p))

p = np.dot(G_exp,p)

p = p + 0.5*force(x)*eps

x = x + np.dot(G_inv,np.dot(expm(G*self.eps)-np.identity(len(G)),p))

p = np.dot(G_exp,p)

p = p + 0.5*force(x)*eps

A.3 MHMC Two-Dimensional Integrator

The two-dimensional integrator requires reshaping in order to use the numpy.dot()
matrix multiplication function. However, after flattening the momentum matrix in
order to multiply both the G exponential and G inverse, it must be reshaped back
into an LxL matrix in order to calculate the canonical change in momentum or the
MHMC change in x.

/***********************************************************/

G_exp = expm(G*self.eps)

G_inv = inv(G)

p = p = p + 0.5*force(x)*eps

for n in range(1, self.nsteps):

x = x + np.reshape((np.dot(G_inv,

np.dot(G_exp-np.identity(len(G)),np.matrix.flatten(p)))),(self.L,self.L))

p = np.reshape(np.dot(G_exp,np.matrix.flatten(p)),(self.L,self.L))

p = p + 0.5*force(x)*eps

x = x + np.reshape((np.dot(G_inv,

np.dot(G_exp-np.identity(len(G)),np.matrix.flatten(p)))),(self.L,self.L))

p = np.reshape(np.dot(G_exp,np.matrix.flatten(p)),(self.L,self.L))

p = p = p + 0.5*force(x)*eps
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Appendix B

Autocorrelation

B.1 Example Autocorrelation Function

This is an example of the autocorrelation function we used for this experiment. T is the lag value
and length refers to the length of the list. As mentioned in 2.6, we calculate an autocorrealtion value
for the range of lag values and sum over these values to create one autocorrelation value for each
list.

/***********************************************************/

mean = np.mean(list)

d = list - mean

cor = np.empty([T])

error = np.empty([T])

for n in range(T):

sd = np.roll(d, -n)

g = d[:(length-n)]*sd[:(length-n)]

cor[n] = np.mean(g)

error[n] = np.std(g)/np.sqrt(g.shape[0]-1)

cor = cor/cor[0]

error = error/cor[0]
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