
Development of a Tunable Microwave Source

for EIT Magnetometer

A thesis submitted in partial fulfillment of the requirement

for the degree of Bachelor of Science in

Physics from the College of William and Mary in Virginia,

by

Jonathan Diaz-Ramos

Advisor: Prof. Irina Novikova

Prof. Todd D. Averett

Williamsburg, Virginia

May 2021

1

Abstract

A cardio-magnetic field produces magnetic field gradients of 10 - 100 pT. As 87Rb atoms get

exposed to magnetic field gradients they experience the Zeeman e↵ect. Two ground state sub-

energy levels are shifted. Controlling the frequency of a laser which matches the shifted sub-energy

levels leads to a measurement of the magnetic field. By implementing an algorithm to an optic

phase modulator, which controls the voltage – thereby a↵ecting laser frequencies, can lead us to the

measurement of a magnetic field. In order for the algorithm to operate it takes a given frequency,

divides the frequency itself, then redefines three values to represent three integers needed to operate

the optic phase modulator. The task completed adjusts the frequencies in a series of steps given a

specified amount of time. The algorithm also changes the frequency of the laser as the magnetic

field shifts; which leads to the measurement of every magnetic field produced.

2

I. INTRODUCTION

The goal of the project is to measure the magnetic field of the heart. The heart muscle has

electrical activity caused by natural ion currents within its cells as it contracts and repulses;

thus, creating its own electromagnetic field that changes in magnitude with every beat.

Measuring magnetic field gradients will give us more details of what’s happening within the

heart. There are two issues with measuring the magnetic field gradients of a heart. The

fields will be experiencing interferences such as the Earth – which holds a magnetic field of

about 20 - 50 µT. Since the magnetic field of the heart is only 10 - 100 pT, this can be easily

disturbed [1].

The solution to the problem was incorporating a gradiometer. The gradiometer will

measure two magnetic field gradients in two separate locations. The further the distance,

of about 1 cm, the greater the di↵erence in magnetic fields become. Subtracting the two

magnetic fields will let us know how the magnetic field of a heart changes depending on its

location, noises will be cancelled out.

A cell containing 87Rb atoms will sit within the magnetic field. As these atoms are

exposed to the magnetic field they will experience the Zeeman E↵ect. This allows the

atoms’ sub-energy levels to shift, giving one the opportunity to measure the magnetic field

as two optical fields enter the vapor cell. The two optical fields will need to be tuned to a

certain frequency which follows a method known as Electromagnetic Induced Transparency

(EIT) helping one measure the magnetic field.

EIT is when two optical fields experience a quantum phenomena, known as the dark

state, where photons begin to have no interactions with the atomic system, they propagate

though a medium making it transparent. No interactions with the atomic system means it is

not absorbing as many photons leading to non-existent spontaneous emissions; this quantum

phenomena is known as the dark state. To enter the dark state, the di↵erence in frequency

of the two optical fields entering the atomic system needs to match the di↵erence between

the energy sub-level of the two ground states. This changes with every new magnetic field.

The frequency used in order to enter the dark state is 6.83468635 GHz.

To control a given frequency we use a voltage-controlled oscillator, VCO – the oscillator

can manipulate a frequency by tuning its voltage. The following task for the year was

to program a D1 Wemos Mini Pro LMX2487 chip that can stabilize the voltage-oscillator

3

thereby stabilizing a given frequency. We program the VCO to stabilize a light source to a

frequency of 6.83468635 GHz. We compare it to a reference source of the same frequency –

if it matches, we have proven that we have the correct program for the chip that can control

the VCO.

The output frequency is defined by three specific values called registers R0, R1, and R5

that operate the VCO. Setting di↵erent frequencies changes the values of the registers R0,

R1, and R5. The registers are defined by three numbers, two of these numbers change due

to a di↵erent frequency input. The three values are called the Numerator, the Function

Numerator, and the Function Denominator; the Function Denominator is held constant.

Throughout the project we will be working with a frequency of 6.83468635 GHz. The

Numerator and the Function Numerator will be defined by this given frequency, leading to

the definition of R0, R1, and R5. This then leads us to the next task. A new program

changes frequencies in a series of steps given a specified amount of time, this becomes useful

when the magnetic field shifts; changing the frequency required to enter the dark state.

II. CONTROL FREQUENCY WITH LMX2487 CHIP

Fig. 1 shows the LMX2487 chip which contains the program that tunes the voltage of

the Voltage-Controlled Oscillator.

Figure 1: Image fo the LMX2487 chip.

The chip is incased in a 3D model printed box with lids as seen below:

4

Figure 2: Image of 3D model printed box.

Placing the LMX2487 chip with the case we have:

Figure 3: Image fo the LMX2487 chip with case.

A. Control Frequency

To calculate the registers one needs the binary representations of the Numerator, Function

Numerator, and the Function Denominator. The Numerator and the Function Numerator

come from dividing the frequency, the Function Denominator is held constant. If our fre-

quency is 6.83468635 GHz, our integers are:

N = 1366 (2.1)

5

FN = 3749080 (2.2)

FD = 4000000 (2.3)

N, FN , and FD are respectively the Numerator, the Function Numerator, and the Function

Denominator.

Below we have a diagram representation of the process, from receiving the frequency, di-

viding the frequency itself, then redefining the three values to represent the needed registers.

Figure 4: Flow diagram of the program used to define the needed registers.

As we receive the frequency, the following mathematical procedures are used to setup the

Numerator and Function Numerator.

Given our specific Frequency, freq, divide the given frequency taking the integer of the

value found:

6

N =
freq

5000000
(2.4)

N is called Numerator. Our Function Denominator, FD, is given, 4000000. By estimating

the following:

FN = d(N � bNc)FDe (2.5)

We find our Function Numerator FN . Now that we have the three values, we preform

three functions to produce our registers: R0, R1, and R5.

Our given register outputs should consist of the following:

R0 = N [10, 0] + FN [11, 0] + [0] (2.6)

R1 = FD[11, 0] + [0, 0, 1, 1] (2.7)

R5 = FD[21, 12] + FN [21, 12] + [1, 0, 1, 1] (2.8)

Where one views N[10,0] as the bits in the binary string N located at positions 0 to 10.

Same goes for the rest of the binary strings.

The binary representations of registers R0, R1, R5 before we start the algorithm are

respectively [0], [0, 1, 1, 1], and [1, 0, 1, 1].

B. Converting Numbers to Binary

Binary representations consist of major bits and least bits. The major bit is defined as

the first bit generated, this bit is the right end of a binary representation. The least bit, or

the last bit, generated sits on the left end. The positions are based on the number of bits a

binary representation contains. For example, we have register R1 which is initially given as:

R5 = [0, 1, 1, 1] (2.9)

This representation consists of four bits. The positions are from 4 to 1; though, for our

algorithm the positions are interpreted as 3 to 0. Another notation for register R5 is [3, 0].

The major bit sits at position 0 while the least bit is at position 3. For this project we read

from right to left when looking at a binary string.

7

In order to produce our needed registers, one needs to convert the Numerator, Function

Numerator, and the Function Denominator into binary form.

To convert this number into a binary representation we first need to know if this specific

number is divisible by 2. Binary code works with 2 since a binary is represented as either

a 1 or 0. The algorithm takes a number and gives the remainder of the number when it’s

divided by 2.

FD :
4000000

2
= 2000000 (2.10)

If a remainder exists, we insert a 1 into our current empty binary representation. If we

there is no remainder, we insert a 0 into our empty binary representation. By using a while

loop we take the number and check if it’s divisible by 2. The number is then subtracted by

the binary representation given:

FD : 2000000� 0 (2.11)

We keep repeating the process while the number is greater than zero. The binary repre-

sentation for the Function Denominator is now:

FD = [1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] (2.12)

Here we have a binary representation consisting of 22 bits; with position 21 to 0. This

binary form is represented as FD[21, 0]. We go through the same process for each of the

numbers needed; therefore, we have the following:

N = [1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0] (2.13)

FN = [1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0] (2.14)

Which are the binary representations of integers found in Eqs. (2.1 - 2.3). These binary

representations are given from the frequency 6.83468635 GHz.

C. Dividing Binary Representations

Our binary representations of the registers R0, R1, R5 consist of bits produced by the Nu-

merator, Function Numerator, and the Function Denominator. As an example, to produce

8

register R1 we would need:

R1 = FD[11, 0] + [0, 0, 1, 1] (2.15)

The Function Denominator, from positions 11 to 0, is added to the left of the existing

register R1. To execute this we need an algorithm that takes a binary representation,

identifies the following positions needed, which then leads to it being sliced from positions

y to x; where y > x. When a user inputs a specific position, we need to make sure position

y is less than the length of a given binary representation. If one were to call position 7 in

a binary representation that only consists of 4 bits, the algorithm would lead to an error.

An if statement takes note of this by making sure position y is less than the length of the

binary representation, when the statement holds True, we proceed to the next step.

Keep in mind the major bit of a representation sits at the right end, to keep this ar-

rangement we slice bits right to left. Using a while loop, we start slicing from position y,

while y > x proceed to slice. After every slice, we subtract position y by one. Looking at

an example, slicing the Function Numerator is seen in Fig.3.

Figure 5: FN being sliced from positions 0 to 11.

We do this for each of the registers in Eqs. (2.6 - 2.8).

D. Defining Registers

To define the registers, we need to join binary representations. After slicing the Function

Denominator from positions 11 to 0, we are ready to insert it into register R1. An algorithm

9

would need to take two existing binary representations and join them together. One needs

to be aware of the arrangements the bits are being placed. The steps of this procedure is

seen in Fig. 4.

Figure 6: Defining register R5.

Taking the length of the binary representations, we use while loops that take the major

bit and implements it at the end of the empty binary representation. After this first step, we

subtract the length by one which leads us closer to the least bit of the binary representations.

While the length of the binary string is greater than 1, we proceed to implement bits.

With the sliced Numerator, Function Numerator, and the Function Denominator placed

in its correct location – we have what we see in Eqs. (2.6 - 2.8).

III. FREQUENCY SETTINGS

As the magnetic field shifts the frequency needed in order to enter the dark state, which

is how we measure magnetic fields, has to be adjusted to match. Our next task is to develop

a program that can adjust the frequency of a laser modulation in a certain amount of time;

10

we call this sweeping frequency. The issues when changing frequencies lies on how fast the

program can control the LMX2487 chip and how it reads frequency inputs.

The LMX2487 chip works o↵ of eight di↵erent registers. Initially, registers R0 to R7 are

defined as:

Register Value

R0 11197502

R1 4352515

R2 48238

R3 15925287

R4 10618633

R5 393579

R6 8126541

R7 10639

Table 1: Initial Registers Definition.

Six of the registers are predefined while the other two [R0, R5] are calculated with every

new frequency. In order for the chip to process the given values, our program takes a register,

coverts it into a binary string, adds bits so it consists a total of 24 bits, then defines the

binary string in terms of its register in a binary table labeled “initSettings” or initial settings.

The initSettings goes as follows:

initSettings = [R0 = [BinaryString],, R7 = [BinaryString]] (3.1)

Every frequency will be producing new binary strings. R0 and R5 are the ones that

change. Looking at e.q. 2.6 and 2.8, we see the strings include FN . This value changes given

its definition in e.q. 2.5. Once a register is changed, it’s labeled, then inserted into a new

initialized settings.

There are three arguments taken when sweeping frequencies. First, we want to get from

frequency A to B. Second, getting from A to B must take N total steps. Lastly, the whole

process takes a certain amount of time, t. The procedure goes as:

Nsub =
A� B

N
(3.2)

11

Nsub is the size of the step it must take to get from A to B in N total steps. Next, each

of these increments takes an amount of time, tsub, where the sum of every tsub is the total

time t:

tsub =
t

N
(3.3)

Nsub takes tsub, both sum up to the total step N and time t. The program successfully

sweeps frequencies. Though, with every new frequency, the program needs to calculate new

registers which takes a certain amount of time. This negatively impacts the tsub between

every new frequency. The next task is to optimize the program to improve time e�ciency.

IV. DEBUGGING

The issues found within the algorithm were mostly surrounded by the arrangements of

the binary representations. In the first steps of developing the algorithm, the major bit

seemed to sit at the left end of a given binary string, but this is not true. For it to be true

the major bit would have to sit to the right end of a given binary representation since it’s

the first bit being generated. Realizing that binary bits are represented as the least to major

bit helped resolve the issue. When slicing the binary representation, bits were missing. The

positions of the bits were not being taken note of. The length of the binary representations

gave errors because of the missing bits, which led to imprecise slicing. The correct register

binary representations have been done.

Sweeping frequencies has its own issues. Every frequency generates new registers. In

order to receive the new registers, one needs to go through the steps as seen in Fig. 4. The

average time it takes to calculate registers is 0.42 seconds. Therefore, every tsub is actually

tsub + 0.42s; making our total time more than needed. To decrease the amount of time, the

process of converting integers to binary, slicing binary strings, and joining them needs to be

more e�cient.

V. RESULTS

The process of creating new registers with every new frequency took 0.42s. After the

optimization, the delay is now only 0.06s.

12

Register R1 was taking the most amount of time, approximately 0.2s. Referring back to

Eq. 2.15, R1 is defined by FD, this is held constant with every new frequency. When we

initialize our settings we include R1, since R1 does not change with every new frequency.

The functions introduced in Fig. 1 were using empty binary tables. Using empty binary

tables lags the program 0.1s on average. Instead of the empty binary tables, we took the

binary tables given in the argument. For example, if we needed to slice a binary table we

use the existing binary table and remove the bits that were not being called upon.

Another lag for the program were the many unnecessary print functions. The only infor-

mation needed were which registers were defined by which frequencies.

The program can make binary strings successfully seen in Eqs. 2.6 - 2.8. Also, The

registers can be defined by their own frequencies. Sweeping frequencies now have a better

delay; though, it can still use some improvements.

VI. CONCLUSION

The current program can take integers, convert it to binary, slice’s binary strings and join

them together; with this, it can create registers needed in order to modulate frequencies.

The program can also sweep frequencies. It can run through the process seen in Fig. 4

with only 0.06s of delay. The next step will be to continue the optimization of the program.

And whether the optimized program can still perform the tasks seen in Fig. 4. Once this

is completed, it will be connected to the LMX2487 chip in order to modulate the frequency.

Which will then lead to taking measurements of magnetic field gradients.

VII. REFERENCES

[1] A. Fey, ”Atomic Magnetometry for the Detection of Cardio-magnetic Fields” (2020).

Undergraduate Honors Theses.

[2] Texas Instruments,”LMX2487 1-GHz to 6-GHz High Performance Delta-Sigma Low-

Power Dual PLLatinumTM Frequency Synthesizers With 3-GHz Integer PLL,” January 2016.

13

