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Section 1: Overview: 

 The World Health Organization reports that falls are the second-leading cause of accidental 

death among senior adults around the world [1]. While individuals at any age can also fall, most 

are able to pick themselves up and move along with their days. A few of them have reached beyond 

age 60 and can face serious injuries even after only one fall. 

Currently, a research team at William & Mary’s Department of Kinesiology & Health 

Sciences attempts to recognize and correct aging-related factors that can result in falling. To meet 

this goal, that team has administered a battery of tests but wants to either improve or redesign those 

tests. Many of them have been videotaped to examine individual gait parameters of older subjects. 

Unfortunately, the team undergoes a slow, laborious process of analyzing video frame by video 

frame to measure step heights and angles without any way of automating this repetitive task. 

Our team, namely the “Unstable Seniors”, is a group of EPAD students whose mission is 

to develop a wireless, non-invasive product for the kinesiology team to improve and streamline 

the data derived from a gait analysis test. Our tasks included calibration, microcontroller circuiting 

and communications, CAD design, and time-series data processing. We want to use accelerometers 

strapped to the legs to quickly and wirelessly provide quantitative data on step height and total 

angular changes about a specific axis of a limb. Our collaboration with the Department of 

Kinesiology & Health Sciences is expected to inspire sports doctors, physical therapists, and other 

healthcare personnel to accurately and quantitatively describe how one walks. 

This project was broken into two parts, initial technology down selection in the fall 

semester and prototyping in the spring. The prototyping phase was further broken into three phases 

in which we made significant steps toward a final product and then evaluated and made changes 

at the end of each. These phases are referred to in the prototyping subsection of the technical 
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specifications section below. In addition, each phase of prototyping involved some amount of 

hardware development, software development, and data processing. We have broken the 

prototyping subsection into three parts according to these three main components of the projects.   

Section 2: Project Planning 

 In this section, we outline the general timeline and planning in the fall semester and then 

in the spring semester. This section is intended to outline the general timeline of the project 

rather than to give technical details about each element. We will delve further into the technical 

details in the following section entitled: “Technical Specifications.” 

Subsection 2.1: Down Selection (Fall Semester): 

During the fall, this project was broken into two phases. The first phase that took us to 

about the midpoint in the fall semester was our initial idea phase to come up with some options 

for products that might be useful to the health sciences gait analysis effort in their fall risk 

prevention research. In order to do this, we met with the health sciences team and watched an 

hour or so of data collection in its current form for them. We then researched different ways that 

the health sciences team’s gait test could be changed. Each of the four team members researched 

a topic and we came up with four initial ideas to consider. These included measuring hip 

abduction and adduction strength, step pressure mapping, gait mapping with IMU sensors [2], 

and gait mapping with computer vision. Each team member researched a single initial topic for 

the first few weeks of the project until mid-October when we made our initial down selection. 

Due to concerns about the ability to test hip adduction/abduction strength of seniors and the lack 

of viability shown in the step pressure sensing efforts, the team chose to pursue the two gait 

mapping related efforts for the remainder of the fall semester.  
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In this second phase of the fall segment of this project, we took our two remaining ideas 

and added a team member to each since two team members had their ideas down selected. In this 

second phase, Nate and Lee worked on gait mapping with IMU sensors and Martha and Colm 

(who was not working with the team during the spring) worked on using computer vision to 

measure step height. We remained working in these teams of two to show the initial viability of 

each of these two ideas until the last week of classes in December where we made our final down 

selection. At that point, we decided to pursue a product based on Bosch BNO055 inertial 

measurement unit sensors. At this point, we broke up a few tasks that could be worked on during 

the winter break. Nate took the lead on developing an initial model of a mounting system for the 

device, Martha and Colm agreed to work on some initial data processing scripts written in 

Python, and Lee took the lead on writing the software for the microcontroller controlling the 

BNO055 sensor. 

Subsection 2.2: Prototyping (Pre-COVID-19):  

 
With the beginning of the second semester came the switch towards wireless 

communication. Leading this charge was the ESP8266 wireless microcontroller. The chip 

features an onboard Wifi chip, which we can implement alongside a Raspberry Pi to create a 

closed system in which we can wirelessly take data and transmit back to the host device. By 

implementing an MQTT protocol to connect the Pi to an array of ESP devices, our wireless 

prototype took shape. The ESP device was able to seamlessly connect to our Raspberry Pi’s 

Network, and we were able to transmit data from the BNO055 through the ESP chip and across 

the MQTT network; however, the chip is, at this point, still relying on wired power, and is not 

free from USB tethers for serial communication. This challenge leads to the next prototyping 

stage, which began with the move to off-campus development due to Covid-19. 
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Subsection 2.3: Prototyping (Post-COVID-19): 

 
Upon our transition to remote instruction, we reduced the number of wireless 

microcontroller sensors to one. We were able to have the Raspberry Pi establish its own WiFi 

protocols to transmit data with one or more ESP32 devices. Running an MQTT Python script 

inside the Pi serves as a way to start and stop the quaternion data collection via the ESP32. This 

step leads to data communications between ESP32 and the Pi for the publication of CSV files 

containing quaternion coordinates and rotation angle changes. At this time, we had the option to 

post-process that information before we can restart device communications as we were using a 

single sensor. Future prototyping will be up to next year’s cohort of EPAD students. 

Section 3: Technical Specifications 

 In this section, we go into greater detail about the technical elements of our project. We 

begin with section 3.1 talking about the initial ideas for potential technologies and how we 

narrowed them to a final idea to pursue in prototyping. We then delve deeper into the 

prototyping phases and the individual components involved in that process.  

Subsection 3.1: Down-Selection 

In order to best satisfy the client’s desire for improved data collection and analysis, 

several methods of automated testing were considered. Each test was designed to output 

quantitative data for nearly instantaneous analysis. These ideas will be discussed in-depth, as 

well as the review process for selecting a single procedure to produce data of interest to our 

client. In the following subsections, we discuss each of our initial potential technologies and 

discuss the reasons that they were eventually down selected.  
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Subsection 3.1.1: Initial Down Selection 

Subsection 3.1.1.1: Hip Abduction/Adduction Strength 

It has been shown that the strength of the hip abductor muscle groups is correlated with 

balance and support [3]. In order to test a subject’s strength in this area, a sitting test was 

proposed in which a dynamometer would be used to the maximum torque a subject could 

produce from their hip abductors. From this data, a model could be created to illustrate the 

correlation between applied torque and force per unit length and propensity for falling accidents.  

Subsection 3.1.1.2: GAITRite Data Decoding 

The client also provided a GAITRite mat for potential use. This mat consists of a densely 

packed array of pressure sensors that are able to map a person’s gait and the relative pressure on 

different locations of their feet during footfall. It was thought that this data might be captured 

from the proprietary system and used in further analysis. If possible, this data could be stored, 

and easily added to a model to predict falling accidents based on anomalies in gait patterns. 

Subsection 3.1.1.3: Computer Vision 

The main dataset that the client wishes to gather is on step height. The team has devised 

two potential methods for measuring this parameter. The first is a system utilizing small cameras 

mounted to the foot, followed by post-processing using computer vision to determine the step 

height using natural rulers in the foreground and background of the image. The use of computer 

vision algorithms would allow research teams to quickly gather qualitative data from existing 

video. 

Subsection 3.1.1.4: Inertial Measurement Units 

The second method for gathering step height data was devised by mounting an array of 

inertial measurement sensors along a subject’s legs. By collecting a time series of angle 
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measurements along the quad, calf, and foot, a digital representation of a person’s gait may be 

created, and by creating the right trigonometric model, a person’s step height may be calculated 

at any point.  

At the end of this initial down selection phase, the team narrowed its focus from four 

initial ideas down to two to pursue further. Firstly, while the research behind the hip abductor 

test points towards a good indication of stability, it was determined that the test would not prove 

applicable in the needed context. In order to accurately measure the correct muscle groups, the 

subject must be laying down; merely sitting in a chair would offer brace points, and the data 

collected would not accurately reflect the strength of the subject’s hip abductors. The subject 

must be laying down to isolate the abductor muscle group, which is not feasible given the 

potential lack of mobility in the subjects. As such, this test was dropped in pursuit of better 

options. The GAITRite mat provided by the client also proved to be a difficult endeavor. The 

propriety program would not allow data extraction outside of the GAITRite environment, so the 

mat will have to remain outside of the developing tests.  

Subsection 3.1.2: Final Down Selection 

Finally, after exploring the possibility of using computer vision throughout the first half 

of the project timeline, potential pitfalls of the system became apparent. The system offered too 

much variation in background and camera mounting position, as well as physical limitations in 

size of camera and needed refresh rates and resolutions. It was simply too difficult to get usable 

footage, and accurately analyze footage consistently. Thus this idea, while offering the benefit of 

integrating with the existing dataset, was not feasible. 

Our final system, relying on wireless sensor units transmitting spatial data to build a 

digital representation of one’s gait, proved to be the most viable. The system uses small, coin-
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sized sensors, and offers a non-invasive way to gather high-resolution data. The Inertial 

Measurement devices we chose, the BNO055, offers data stream at 20Hz, without output in 

Euler angles (3-dimensional representation of rotation around 3 orthogonal axis, with the z-axis 

directed through the Earth’s center of gravity) and/or Quaternions (a system using 3 real axis and 

a fourth imaginary axis of rotation). In order to escape phenomena such as gimbal lock- the 

alignment of axes during rotation, and subsequent data loss, quaternions are chosen as 

measurement values. This also allows angle changes to be immediately calculated, as the dot 

product of 2 quaternions results in the half-angle rotation between them. This promising method 

of data-collection allowed the team to push forward with prototyping a wireless system to deliver 

real-time, accurate data for computational analysis.  

Subsection 3.2: Prototyping 

 This section will be broken into three as there were three main components to the 

prototyping phase of our project. These are hardware development which includes, first, the 

mounting system and microcontroller chip selection. Second, software/firmware development 

which includes the code used to control the Raspberry Pi, the microcontroller + sensor 

configuration, and the data collection algorithm in general. Finally, data processing and analysis 

which includes the post processing and plotting of data once it had been taken. As mentioned in 

the project planning section, these were the lines across which we divided the workload during 

the prototyping section of the year.  

Section 3.2.1: Hardware Development: 

The first two iterations of the mounting system were designed to house a coin cell battery 

[4], an mBed NXP lcp1768 microcontroller [5], and the BNO055 [6] breakout board. These are 

shown below in figure 1.  
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Figure 1: Prototype mounting systems versions 1 and 2 

 

The first iteration (version 1) features a self-locking mechanism where the top of the model 

slides on and twists to lock over the bottom. In theory, the BNO055 board would be stacked on 

top of the mBed microcontroller in the larger slot and the coin cell would slide into the smaller 

slot. This self-locking proved to be difficult to manufacture without significant post processing 

after printing and it was bulkier than necessary. The second iteration (version 2) locks with 

screws in threaded slots in the corners of the model and contains embedded slots for Velcro 

straps rather than extruded handles. It did, however, feature the same stacking layout of 

components. This proved to be more robust but the slots for Velcro straps proved difficult to 3D 

print and the stacking layout made it much taller than necessary leading to bouncing when in use. 

We then moved on to the second phase of prototyping. In this phase we began looking at 

wireless data collection. We made the decision to move to a different mBed based 

microcontroller called an mBed MAX32630FTHR[7]. This microcontroller is designed to run on 

battery power, contains a port to plug in a rechargeable battery, and supports Bluetooth and BLE 
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communication making it an ideal choice for a wearable sensor configuration. After considerable 

work on the part of Lee and Dr. Cooke to try to make the mBed MAX32630FTHR chip function 

with BLE communication, we were forced to abandon the idea due to lack of functionality and 

time constraints. We were also able to fabricate another iteration of a mounting system as shown 

in figure 2 below. This version was configured to fit 2 coin cells in series in the circular slot, the 

mBed MAX32630FTHR, and the BNO055 board in different slots rather than stacked. This 

version is shorter and less subject to bounce as a person walks. It contains springs to hold 

batteries, sensor, and microcontroller more firmly in place. Finally, it contains outward slots for 

Velcro straps that are more feasible to produce and reuse than the inward, rounded slots on the 

previous model. The microcontroller and sensor are both shown in figure 5 mounted inside the 

model.  

 
Figure 2: Prototype Mounting System Version 3. 

 

In the third phase of prototyping, we switched our microcontroller to a Wifi based chip 

called an ESP8266 NodeMCU 12-E [8] and then later to an updated version of the same chip 

called an ESP32 DevKit 3C [9]. These were necessary to make wireless communication between 
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microcontroller and raspberry Pi function successfully. We also switched to a Lithium Polymer 

battery[10] after the first few tests at fully wireless data collection and learning that the coin cell 

circuit could not provide the necessary current to the microcontroller system. This is shown 

below in figure 3. 

 
Figure 3:Lithium polymer battery, part number 1528-1841-ND on Digikey.com 

This battery is shown in figure 14 along with its part number. To go along with these last 

hardware changes, we fabricated a final mounting system model as shown in figure 4. This 

model is shorter than the previous as it stacks the BNO055 board and the Lithium Polymer 

battery and has larger arms holding the Velcro straps in place than the previous model. This 

allows it to be both more robust than previous models as well as slightly smaller.  

 
Figure 4: Final Mounting System. 
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Section 3.2.2: Software/Firmware Development: 

In our first phase of prototyping, we worked with an mBed NXP lcp1768 microcontroller 

and the BNO055 breakout board. In this initial phase, the only code used was the firmware 

written to control the microcontroller. This consisted of the use of 4 libraries in an Arduino file 

and some base code to get sensor readings. The first of these libraries was wire.h which 

initializes I2C communication between the computer and the microcontroller. The second was 

Adafruit_Sensor.h which is adafruit’s sensor driver library. This allows the program to 

communicate with the adafruit sensor. The third library was Adafruit_BNO055.h which contains 

functions specific to the initialization and use of the BNO055 chip that is embedded on the 

Adafruit breakout board we were using. Finally, we included utility/imumaths.h which allows 

the Arduino script to understand the output of the BNO055 output.[11] 

In the second phase of prototyping, not much changed on the software side as we were 

unable to get the wireless capabilities of the mBed MAX32630FTHR to function. In the third 

phase, however, we had to change the Arduino code dramatically to incorporate the Wifi 

communication. We chose to use MQTT broker/client protocols as our mode of Wifi based 

communication between the microcontroller and a Raspberry Pi 4 to do our data collection. 

MQTT communication works by configuring devices as clients all connected to the same 

network as each other and as the central broker. Clients have the capability to publish messages 

to a topic as well as to subscribe to topics and receive messages sent by other clients to those 

topics. When a message is published, it is sent first to the broker which determines the topic of 

the message and which clients should receive the message depending on the topic. In our case, 

we configured the ESP microcontroller as a client and the Raspberry Pi to broadcast a network 
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over which to communicate as well as acting as the broker and a client. This way, we can 

broadcast commands from the Pi to the ESP’s wirelessly and receive data, also wirelessly, from 

the ESP on the Raspberry Pi. As far as the code we used, this first consisted of adding two 

libraries. These were Wifi.h to give us functions to control connection to a Wifi network and 

PubSubClient.h to control the MQTT protocols. A full flow chart of the code used on the ESP32 

DevkitC is shown in the appendix. In addition to the microcontroller firmware, we also wrote a 

software script in python to control the MQTT protocols on the Raspberry Pi.  In this script, we 

imported paho.mqtt.client [12] as a library for functions to control the MQTT protocols, numpy 

to do the give us array appending capabilities necessary for transporting data to CSV files, math 

in order to convert between data types, and CSV to give us read/write capabilities on CSV files. 

In the script itself, we have three main functions: on_message that deals with when a message is 

received, on_connect to handle when the pi connects to the MQTT broker, and on_log to print 

what’s going on. The bulk of the code happens in on_message allowing us to use different 

messages being sent from the ESP32 to trigger protocols like adding data to a CSV file, 

converting data between data types, and plotting.  

Section 3.2.3: Data Processing/Analysis 

 In our first phase of prototyping with the mBed NXP lcp1768 setup, we were able to take 

data relating to the angle change of the calf and thigh while walking and convert them to data 

regarding the height of the foot while walking. A plot of thigh and calf angles in degrees as well 

as the calculated step height data in centimeters is shown below in figure 5. The x-axis of all 

plots is a count of data points taken at approximately 100Hz.   
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Figure 5: Initial step height measurements. 

This step height data contained a relatively high level of uncertainty with errors in the 

centimeter range. This data for step height was calculated by measuring (by hand) the length of 

the thigh and calf and using the angle change of the thigh and the calf to measure the height that 

the foot has left the ground. This equation is shown in equation 1 where h is step height, T is the 

length of the thigh, and C is the length of the calf. A model of the step that this equation 

corresponds to is visually shown in figure 6 below where ߠ and ߮ refer to the angle change of 

the thigh and calf respectively.  

Equation 1:   ݄ ൌ  ܶ ∗ (ߠ)ݏ݋ܥ  ൅ ܥ  ∗ ߮)ݏ݋ܥ  
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Figure 6: Model of initial step height motion. 

In phase two of prototyping, in addition to switching to a wireless capable 

microcontroller, we also realized that our data had a large amount of error due to the effects of 

poor alignment and, in some cases, gimbal lock which occurs when two of the three degrees of 

freedom are driven into a parallel configuration. We made the decision to switch from measuring 

the Euler pitch to measuring quaternions. Quaternions measure linear motion in the x, y, and z 

axis as well as rotation w about an axis. By taking the dot product the initial quaternion and the 

inverse of the final quaternion, we can get the cosine of half of the angle between the two. If we 

then take the arccosine and multiply by 2, we can get the angle change about the axis of rotation 

between the two quaternions. This is shown in equation 2 below where Q is a quaternion 

consisting of w, x, y, and z coordinates.  

݄݃݊ܽܥ ݈݁݃݊ܣ  ൌ ଵ[2ିݏ݋ܿ ∗ (ܳ௜௡௜௧௜௔௟ ∙ (െܳ௙௜௡௔௟)]      Equation 2 

This is also shown visually in the appendix in figure 7 of the 30º angle change between parent 

and child quaternions about the depicted axis. This measurement allows us to bypass the problem 

of missing some angle data that was picked up in roll and yaw instead of pitch due to 

misalignment of the sensor on the leg. 
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Figure 7: Quaternion coordinate visual representation. 

 Regarding data analysis in this final phase of prototyping, we collected the CSV files that 

resulted from the wireless communications between the Raspberry Pi and the microcontrollers. 

In addition, we wrote an additional Python script that can take in and plot the data with a library 

called Matplotlib. Note that the BNO device can report either the Euler angles or the quaternions. 

As 4-coordinate descriptions of the rotation angles and axis orientations, quaternions have been 

useful for directly measuring the net angle change about a specific axis. If we have two 

quaternions--one at time = 0 (ܳଵ ൌ ܳ଴) and one at any time ranging from 0 to 3000 (ܳଶ ൌ

ܳ[଴ିଷ଴଴଴])--we can take the dot product of the first and the inverse of the second (see Equation 2, 

Figure 8) to obtain the cosine of half of the net angle change between them. That is: 

cos(
ߙ

ଶ
)  = ܳଵ ∙ (െܳଶ) ൌ ଶݓଵݓ ൅ ଶݔଵݔ ൅ ଶݕଵݕ ൅  ଶ                   (Equation 3)ݖଵݖ
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Figure 8: A visual way of finding and multiplying two quaternions over walking time 

All of the quaternions are normalized so that ݓଶ ൅ ଶݔ ൅ ଶݕ ൅ ଶݖ ൌ 1, where the angle between 

one orientation and itself is zero [13]. 

 So far, the multiplication of two quaternions gives us the thigh and calf angles that 

change over the course of walking activity. Figure 9 displays such changes. Both plots not only 

are representative of the typical angles each part of the leg makes, but they also display the 

changes in one variable.  
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Figure 9: Quaternion-based net angle changes at the thigh (blue) and calf (red); 0 degrees signifies standing straight, other 

angles indicate walking movement. 

Unlike Euler angles, the quaternions are simpler at measuring the rotation angles that we need to 

accurately calculate step height and other gait parameters. 

 Euler angles are representative of a rotation that is about one of the main Euler axes: roll 

(߶), pitch (ߐ), or yaw (ߖ). As we focus mainly on the pitch, if that is the only angle changing 

dramatically at the calf, it can clearly demonstrate how much a limb can rotate, especially via the 

net angle change (see Figure 10 below).  
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Figure 10: Our quaternion analysis can agree with the angle analysis when only the pitch (magenta) is changing significantly. 

The roll and yaw angles do not make as much movement as the pitch is the primary axis that we 

rotate about. If we have both the pitch and roll changing significantly at the thigh (see Figure 

11), we will need to combine those two Euler angles or even all three of them. We will encounter 

two challenges that come with Euler angles combinations.  

 
Figure 11: Our quaternion analysis can also agree with the angle analysis when two or more Euler angles changing 

significantly. A small flowchart is provided to understand how we could plot the total angle changes within a combined Euler 
angle (see Figure 12). 

First, we must find the dot product of each rotation matrix per angle, and we must extract the 

Euler angle representations from the resulting rotation matrix. 
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      (Equation 4) 

߮ோ ൌ ,ଷଶܴ)2݊ܽݐܿݎܽ ܴଷଷ)     (Equation 5) 

ோߠ ൌ  (Equation 6)     (ଵଷܴ)݊݅ݏܿݎܽ

߰ோ ൌ ,ଶଵܴ)2݊ܽݐܿݎܽ ܴଵଵ)     (Equation 7) 

,ݕ)2݊ܽݐܿݎܽ      (ݔ  ൌ

,(ݔ/ݕ)݊ܽݐܿݎܽ ൐ ݔ ݂݅  0   (Equation 8) 

      ൌ (ݔ/ݕ)݊ܽݐܿݎܽ   ൅ ,ߨ  ൏ ݔ ݂݅  0, ൒ ݕ 0  

  

      ൌ (ݔ/ݕ)݊ܽݐܿݎܽ   െ ,ߨ  ൏ ݔ ݂݅  0, ൏ ݕ 0 

      ൌ  ൅ 2/ߨ, ൌ ݔ ݂݅  0, ൐ ݕ 0    

      ൌ  െ 2/ߨ, ൌ ݔ ݂݅  0, ൏ ݕ 0    

      ൌ ,݂݀݁݊݅݁݀݊ݑ  ൌ ݔ ݂݅  0, ൌ ݕ 0    

 

 Second, if we let combined rotation angle ߙோ ൌ ܴ௭(߰)ܴ௬(ߠ)ܴ௫(߮) and unit vector ̂ݎ be 

the axis about which the rotation occurs, we will need to use ܿݏ݋(
ఈೃ

ଶ
), )݊݅ݏ

ఈೃ

ଶ
 to calculate all ݎ̂(

four coordinates of each quaternion. Theoretically,  
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  (Equation 9) 

 

For the purpose of this project, however, we calculated them in a way that allows us to produce 

the quaternions that are similar to those produced by the BNO device. Hence, for the quaternion 

of combined rotation angle ܳோ ൌ ோݓ] , ோݔ , ோݕ ,  ,[ோݖ

 

ோ
ఈೃ

ଶ
       (Equation 10) 

ோ
ఈೃ

ଶ
    (Equation 11) 

ோ
௬

ଶ

௬

ଶ௦௜௡(
ഀೃ

మ
)

    (Equation 12) 

ோ
௭

ଶ

௭

ଶ௦௜௡(
ഀೃ

మ
)

    (Equation 13) 

 

 Figure 12 compares two plots with quaternion-based and Euler-based net angle changes 

between two quaternions. If we look closer at the slight changes in the plot for the angular 

changes between quaternions of a combined Euler angle, we can argue that that plot is a result of 

the complicated math that we can avoid if the BNO quaternions are better at measuring angle 
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change. It is imperative to know this concept because we are rotating the initial axis of a limb 

with the possibility of gimbal lock and other axes rotating. We would then have to waste time 

doing the math to determine the most useful results for the net angle change. 

 
Figure 12: A comparison between the Euler-based (violet) and quaternion-based (blue) net angle changes. 

 The last task to complete under data processing is to obtain the total angle change applied 

to a leg being lifted upward while the subject is sitting. This is based on the wireless quaternion 

data from a single sensor device. Imagine sitting with a leg resting at 90 degrees; if we choose to 

raise the lower part of the leg below the knee, we can typically say that our leg becomes 

horizontal at 180 degrees. We can then visualize this change of up to 90 degrees when we 

calculate the dot products of quaternions (see Figure 13).  
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Figure 13: Net angle changes at the raising leg during a sitting session. 

To explain the smaller dips at time counts 50-60 and 70-80, the leg appears to be swinging at 

smaller angles as a warmup between two complete cycles of leg-raising activity. If we confirm 

that the leg in a sitting position can change angles from 90 to 180 degrees, then we should stress 

that quaternions are simple enough to describe the rotations that usually occur in leg movements. 

Section 4: Looking Forward 

Due to time constraints and the necessity to work remotely for the last month or so of the 

project, we were not able to deliver a finished and functioning product. Because of that, we 

would like to take this section to outline the steps that we would have taken had we not been 

time-constrained. In addition, as there is another group working on this effort for the 2020-2021 

academic year, we hope to give them a sense of our thoughts on how to best complete the 

project.   

The first major component that we ran out of time completing is integrating multiple 

sensors using MQTT Wifi communication between the Raspberry Pi and the ESP32 

microcontroller. This process includes modifying both the ESP32 code and the MQTT python 
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script slightly in order to identify which sensor configuration each set of coordinates that is sent 

to the Pi is coming from. Our idea for this was to publish coordinates from each ESP to a topic 

labeled with that ESP’s location, for example: “Left Calf.” This way the data can be saved and 

manipulated for each leg segment and then combined later for step height calculations. The 

important component when integrating multiple sensors and microcontrollers into the system is 

to ensure that all microcontrollers are subscribed to the “cmd” topic in order for synchronization 

of starting and stopping data collection.  

The second major component that we were unable to complete was an automated 

calibration step that allowed the system to calculate the length of a subject’s calf and thigh leg 

segments from a step. Our method for this was to have a specific routine outlined on the 

microcontroller that takes quaternion data and measures the angle change when a subject steps 

onto a block of known height and distance from the leg’s starting position. We can then use the 

angle change information to calculate the length of the calf and thigh leg segments. A model of 

this calibration step is shown below in figure 14 where h is the known height of the block and d 

is the known distance from the leg’s starting position. In addition, the equations for C and T are 

shown in equations 3 and 4.  

(
೏

ೞ೔೙(ഇ)
ି

೓
భష೎೚ೞ(ഇ)

)

[(
೎೚ೞ(ക)షభ
భష೎೚ (ഇ)

)ା(
ೞ೔೙(ക)
ೞ೔೙(ഇ)

)]
    Equation 3 

ௗ ି ஼௦௜௡(ఝ)

௦௜௡(ఏ)
                Equation 4 
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Figure 14: Calibration step model. 

Once the system is calibrated and T and C are known, we can use them to determine step 

height by subtracting Tcos(ߠ)and Ccos(߮)from T + C giving us h at every point in the dataset 

where angle change is measured against the starting position. The final state of this data analysis 

that we believe is most valuable to the health sciences effort is to look at the maximum step 

height when the foot is parallel to the floor and present those values as individual step height 

measurements for each step in a walk. This can be determined using a third sensor on the foot to 

determine when the foot flex has near-zero angle change relative to the starting position.  
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Appendix: 
Code A: DebugSubroutinesTeamUS.py 

  



26 
 

  

  



27 
 

  

  



28 
 

  

  



29 
 

  

  



30 
 

  

 



31 
 

 
 

 



32 
 

 

 



33 
 

 

 



34 
 

 

 



35 
 

 

 



36 
 

 

 



37 
 

 

  



38 
 

Code B: TeamUSDataProcessingFinal2020.py 

 

 



39 
 

 
  



40 
 

References 

[1] “Falls.” World Health Organization, World Health Organization, www.who.int/news-
room/fact-sheets/detail/falls. 

[2] An Automated Gait Feature Extraction Method for Identifying Gait Asymmetry Using 
Wearable Sensors. Arif Reza Anwary1, Hongnian Yu1, Michael Vassallo2. 

[3] The effect of hip abductor fatigue on static balance and gait parameters. Wonjeong 
Hwanga, Jun Ha Jangb, Minjin Huhb, Yeon Ju Kimb, Sang Won Kimb, In Ui Hongb, and Mi 
Young Leeb 
 
[4] CR2032 Battery. https://www.batteryjunction.com/panasonic-cr2032-
bulk.html?gclid=Cj0KCQjw7qn1BRDqARIsAKMbHDZVC0noGta2xe8_qEa5NcyxfxJN2A
Hfen8-AlZARjZY6FtguoGNSlwaAqf_EALw_wcB 
 
[5] ARM Mbed LPC1768 Microcontroller. https://www.nxp.com/products/processors-and-
microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc1700-cortex-m3/arm-mbed-
lpc1768-board:OM11043 
 
[6] Bosch BNO055 IMU. https://learn.adafruit.com/adafruit-bno055-absolute-orientation-
sensor 
 
[7] mbed MAX32630FTHR. https://os.mbed.com/platforms/MAX32630FTHR/ 
 
[8] NodeMCU ESP8266 12-E. https://nodemcu.readthedocs.io/en/master/ 
 
[9] ESP32 Dev Kit 3C. https://www.espressif.com/en/products/devkits/esp32-
devkitc/overview 
 
[10] 500mAh LiPo Battery. https://www.adafruit.com/product/1578 
 
[11] Adafruit. “Adafruit Unified Sensor Library.” GitHub, 4 Feb. 2020, 
github.com/adafruit/Adafruit_BNO055. 
 
[12] “Paho-Mqtt.” PyPI, pypi.org/project/paho-mqtt/. 

[13] “Rotations, Orientation, and Quaternions.” Rotations, Orientation, and Quaternions - 
MATLAB & Simulink, www.mathworks.com/help/fusion/examples/rotations-orientation-and-
quaternions.html. 

 


