

Gait Analysis by Angular Step Mapping for
Fall Risk Prevention Research

A senior team project report
submitted in partial fulfillment of the requirement for the degree of

Bachelor of Science in Physics concentrating in
Engineering Physics and Applied Design

from the College of William & Mary in Virginia,

by

Lee Bradley
Martha Gizaw
Nate Winneg

Mentor: Dr. William Cooke

Dr. Jeffrey Nelson

Williamsburg, Virginia
April 30, 2020

1

Section 1: Overview:

 The World Health Organization reports that falls are the second-leading cause of accidental

death among senior adults around the world [1]. While individuals at any age can also fall, most

are able to pick themselves up and move along with their days. A few of them have reached beyond

age 60 and can face serious injuries even after only one fall.

Currently, a research team at William & Mary’s Department of Kinesiology & Health

Sciences attempts to recognize and correct aging-related factors that can result in falling. To meet

this goal, that team has administered a battery of tests but wants to either improve or redesign those

tests. Many of them have been videotaped to examine individual gait parameters of older subjects.

Unfortunately, the team undergoes a slow, laborious process of analyzing video frame by video

frame to measure step heights and angles without any way of automating this repetitive task.

Our team, namely the “Unstable Seniors”, is a group of EPAD students whose mission is

to develop a wireless, non-invasive product for the kinesiology team to improve and streamline

the data derived from a gait analysis test. Our tasks included calibration, microcontroller circuiting

and communications, CAD design, and time-series data processing. We want to use accelerometers

strapped to the legs to quickly and wirelessly provide quantitative data on step height and total

angular changes about a specific axis of a limb. Our collaboration with the Department of

Kinesiology & Health Sciences is expected to inspire sports doctors, physical therapists, and other

healthcare personnel to accurately and quantitatively describe how one walks.

This project was broken into two parts, initial technology down selection in the fall

semester and prototyping in the spring. The prototyping phase was further broken into three phases

in which we made significant steps toward a final product and then evaluated and made changes

at the end of each. These phases are referred to in the prototyping subsection of the technical

2

specifications section below. In addition, each phase of prototyping involved some amount of

hardware development, software development, and data processing. We have broken the

prototyping subsection into three parts according to these three main components of the projects.

Section 2: Project Planning

 In this section, we outline the general timeline and planning in the fall semester and then

in the spring semester. This section is intended to outline the general timeline of the project

rather than to give technical details about each element. We will delve further into the technical

details in the following section entitled: “Technical Specifications.”

Subsection 2.1: Down Selection (Fall Semester):

During the fall, this project was broken into two phases. The first phase that took us to

about the midpoint in the fall semester was our initial idea phase to come up with some options

for products that might be useful to the health sciences gait analysis effort in their fall risk

prevention research. In order to do this, we met with the health sciences team and watched an

hour or so of data collection in its current form for them. We then researched different ways that

the health sciences team’s gait test could be changed. Each of the four team members researched

a topic and we came up with four initial ideas to consider. These included measuring hip

abduction and adduction strength, step pressure mapping, gait mapping with IMU sensors [2],

and gait mapping with computer vision. Each team member researched a single initial topic for

the first few weeks of the project until mid-October when we made our initial down selection.

Due to concerns about the ability to test hip adduction/abduction strength of seniors and the lack

of viability shown in the step pressure sensing efforts, the team chose to pursue the two gait

mapping related efforts for the remainder of the fall semester.

3

In this second phase of the fall segment of this project, we took our two remaining ideas

and added a team member to each since two team members had their ideas down selected. In this

second phase, Nate and Lee worked on gait mapping with IMU sensors and Martha and Colm

(who was not working with the team during the spring) worked on using computer vision to

measure step height. We remained working in these teams of two to show the initial viability of

each of these two ideas until the last week of classes in December where we made our final down

selection. At that point, we decided to pursue a product based on Bosch BNO055 inertial

measurement unit sensors. At this point, we broke up a few tasks that could be worked on during

the winter break. Nate took the lead on developing an initial model of a mounting system for the

device, Martha and Colm agreed to work on some initial data processing scripts written in

Python, and Lee took the lead on writing the software for the microcontroller controlling the

BNO055 sensor.

Subsection 2.2: Prototyping (Pre-COVID-19):

With the beginning of the second semester came the switch towards wireless

communication. Leading this charge was the ESP8266 wireless microcontroller. The chip

features an onboard Wifi chip, which we can implement alongside a Raspberry Pi to create a

closed system in which we can wirelessly take data and transmit back to the host device. By

implementing an MQTT protocol to connect the Pi to an array of ESP devices, our wireless

prototype took shape. The ESP device was able to seamlessly connect to our Raspberry Pi’s

Network, and we were able to transmit data from the BNO055 through the ESP chip and across

the MQTT network; however, the chip is, at this point, still relying on wired power, and is not

free from USB tethers for serial communication. This challenge leads to the next prototyping

stage, which began with the move to off-campus development due to Covid-19.

4

Subsection 2.3: Prototyping (Post-COVID-19):

Upon our transition to remote instruction, we reduced the number of wireless

microcontroller sensors to one. We were able to have the Raspberry Pi establish its own WiFi

protocols to transmit data with one or more ESP32 devices. Running an MQTT Python script

inside the Pi serves as a way to start and stop the quaternion data collection via the ESP32. This

step leads to data communications between ESP32 and the Pi for the publication of CSV files

containing quaternion coordinates and rotation angle changes. At this time, we had the option to

post-process that information before we can restart device communications as we were using a

single sensor. Future prototyping will be up to next year’s cohort of EPAD students.

Section 3: Technical Specifications

 In this section, we go into greater detail about the technical elements of our project. We

begin with section 3.1 talking about the initial ideas for potential technologies and how we

narrowed them to a final idea to pursue in prototyping. We then delve deeper into the

prototyping phases and the individual components involved in that process.

Subsection 3.1: Down-Selection

In order to best satisfy the client’s desire for improved data collection and analysis,

several methods of automated testing were considered. Each test was designed to output

quantitative data for nearly instantaneous analysis. These ideas will be discussed in-depth, as

well as the review process for selecting a single procedure to produce data of interest to our

client. In the following subsections, we discuss each of our initial potential technologies and

discuss the reasons that they were eventually down selected.

5

Subsection 3.1.1: Initial Down Selection

Subsection 3.1.1.1: Hip Abduction/Adduction Strength

It has been shown that the strength of the hip abductor muscle groups is correlated with

balance and support [3]. In order to test a subject’s strength in this area, a sitting test was

proposed in which a dynamometer would be used to the maximum torque a subject could

produce from their hip abductors. From this data, a model could be created to illustrate the

correlation between applied torque and force per unit length and propensity for falling accidents.

Subsection 3.1.1.2: GAITRite Data Decoding

The client also provided a GAITRite mat for potential use. This mat consists of a densely

packed array of pressure sensors that are able to map a person’s gait and the relative pressure on

different locations of their feet during footfall. It was thought that this data might be captured

from the proprietary system and used in further analysis. If possible, this data could be stored,

and easily added to a model to predict falling accidents based on anomalies in gait patterns.

Subsection 3.1.1.3: Computer Vision

The main dataset that the client wishes to gather is on step height. The team has devised

two potential methods for measuring this parameter. The first is a system utilizing small cameras

mounted to the foot, followed by post-processing using computer vision to determine the step

height using natural rulers in the foreground and background of the image. The use of computer

vision algorithms would allow research teams to quickly gather qualitative data from existing

video.

Subsection 3.1.1.4: Inertial Measurement Units

The second method for gathering step height data was devised by mounting an array of

inertial measurement sensors along a subject’s legs. By collecting a time series of angle

6

measurements along the quad, calf, and foot, a digital representation of a person’s gait may be

created, and by creating the right trigonometric model, a person’s step height may be calculated

at any point.

At the end of this initial down selection phase, the team narrowed its focus from four

initial ideas down to two to pursue further. Firstly, while the research behind the hip abductor

test points towards a good indication of stability, it was determined that the test would not prove

applicable in the needed context. In order to accurately measure the correct muscle groups, the

subject must be laying down; merely sitting in a chair would offer brace points, and the data

collected would not accurately reflect the strength of the subject’s hip abductors. The subject

must be laying down to isolate the abductor muscle group, which is not feasible given the

potential lack of mobility in the subjects. As such, this test was dropped in pursuit of better

options. The GAITRite mat provided by the client also proved to be a difficult endeavor. The

propriety program would not allow data extraction outside of the GAITRite environment, so the

mat will have to remain outside of the developing tests.

Subsection 3.1.2: Final Down Selection

Finally, after exploring the possibility of using computer vision throughout the first half

of the project timeline, potential pitfalls of the system became apparent. The system offered too

much variation in background and camera mounting position, as well as physical limitations in

size of camera and needed refresh rates and resolutions. It was simply too difficult to get usable

footage, and accurately analyze footage consistently. Thus this idea, while offering the benefit of

integrating with the existing dataset, was not feasible.

Our final system, relying on wireless sensor units transmitting spatial data to build a

digital representation of one’s gait, proved to be the most viable. The system uses small, coin-

7

sized sensors, and offers a non-invasive way to gather high-resolution data. The Inertial

Measurement devices we chose, the BNO055, offers data stream at 20Hz, without output in

Euler angles (3-dimensional representation of rotation around 3 orthogonal axis, with the z-axis

directed through the Earth’s center of gravity) and/or Quaternions (a system using 3 real axis and

a fourth imaginary axis of rotation). In order to escape phenomena such as gimbal lock- the

alignment of axes during rotation, and subsequent data loss, quaternions are chosen as

measurement values. This also allows angle changes to be immediately calculated, as the dot

product of 2 quaternions results in the half-angle rotation between them. This promising method

of data-collection allowed the team to push forward with prototyping a wireless system to deliver

real-time, accurate data for computational analysis.

Subsection 3.2: Prototyping

 This section will be broken into three as there were three main components to the

prototyping phase of our project. These are hardware development which includes, first, the

mounting system and microcontroller chip selection. Second, software/firmware development

which includes the code used to control the Raspberry Pi, the microcontroller + sensor

configuration, and the data collection algorithm in general. Finally, data processing and analysis

which includes the post processing and plotting of data once it had been taken. As mentioned in

the project planning section, these were the lines across which we divided the workload during

the prototyping section of the year.

Section 3.2.1: Hardware Development:

The first two iterations of the mounting system were designed to house a coin cell battery

[4], an mBed NXP lcp1768 microcontroller [5], and the BNO055 [6] breakout board. These are

shown below in figure 1.

8

Figure 1: Prototype mounting systems versions 1 and 2

The first iteration (version 1) features a self-locking mechanism where the top of the model

slides on and twists to lock over the bottom. In theory, the BNO055 board would be stacked on

top of the mBed microcontroller in the larger slot and the coin cell would slide into the smaller

slot. This self-locking proved to be difficult to manufacture without significant post processing

after printing and it was bulkier than necessary. The second iteration (version 2) locks with

screws in threaded slots in the corners of the model and contains embedded slots for Velcro

straps rather than extruded handles. It did, however, feature the same stacking layout of

components. This proved to be more robust but the slots for Velcro straps proved difficult to 3D

print and the stacking layout made it much taller than necessary leading to bouncing when in use.

We then moved on to the second phase of prototyping. In this phase we began looking at

wireless data collection. We made the decision to move to a different mBed based

microcontroller called an mBed MAX32630FTHR[7]. This microcontroller is designed to run on

battery power, contains a port to plug in a rechargeable battery, and supports Bluetooth and BLE

9

communication making it an ideal choice for a wearable sensor configuration. After considerable

work on the part of Lee and Dr. Cooke to try to make the mBed MAX32630FTHR chip function

with BLE communication, we were forced to abandon the idea due to lack of functionality and

time constraints. We were also able to fabricate another iteration of a mounting system as shown

in figure 2 below. This version was configured to fit 2 coin cells in series in the circular slot, the

mBed MAX32630FTHR, and the BNO055 board in different slots rather than stacked. This

version is shorter and less subject to bounce as a person walks. It contains springs to hold

batteries, sensor, and microcontroller more firmly in place. Finally, it contains outward slots for

Velcro straps that are more feasible to produce and reuse than the inward, rounded slots on the

previous model. The microcontroller and sensor are both shown in figure 5 mounted inside the

model.

Figure 2: Prototype Mounting System Version 3.

In the third phase of prototyping, we switched our microcontroller to a Wifi based chip

called an ESP8266 NodeMCU 12-E [8] and then later to an updated version of the same chip

called an ESP32 DevKit 3C [9]. These were necessary to make wireless communication between

10

microcontroller and raspberry Pi function successfully. We also switched to a Lithium Polymer

battery[10] after the first few tests at fully wireless data collection and learning that the coin cell

circuit could not provide the necessary current to the microcontroller system. This is shown

below in figure 3.

Figure 3:Lithium polymer battery, part number 1528-1841-ND on Digikey.com

This battery is shown in figure 14 along with its part number. To go along with these last

hardware changes, we fabricated a final mounting system model as shown in figure 4. This

model is shorter than the previous as it stacks the BNO055 board and the Lithium Polymer

battery and has larger arms holding the Velcro straps in place than the previous model. This

allows it to be both more robust than previous models as well as slightly smaller.

Figure 4: Final Mounting System.

11

Section 3.2.2: Software/Firmware Development:

In our first phase of prototyping, we worked with an mBed NXP lcp1768 microcontroller

and the BNO055 breakout board. In this initial phase, the only code used was the firmware

written to control the microcontroller. This consisted of the use of 4 libraries in an Arduino file

and some base code to get sensor readings. The first of these libraries was wire.h which

initializes I2C communication between the computer and the microcontroller. The second was

Adafruit_Sensor.h which is adafruit’s sensor driver library. This allows the program to

communicate with the adafruit sensor. The third library was Adafruit_BNO055.h which contains

functions specific to the initialization and use of the BNO055 chip that is embedded on the

Adafruit breakout board we were using. Finally, we included utility/imumaths.h which allows

the Arduino script to understand the output of the BNO055 output.[11]

In the second phase of prototyping, not much changed on the software side as we were

unable to get the wireless capabilities of the mBed MAX32630FTHR to function. In the third

phase, however, we had to change the Arduino code dramatically to incorporate the Wifi

communication. We chose to use MQTT broker/client protocols as our mode of Wifi based

communication between the microcontroller and a Raspberry Pi 4 to do our data collection.

MQTT communication works by configuring devices as clients all connected to the same

network as each other and as the central broker. Clients have the capability to publish messages

to a topic as well as to subscribe to topics and receive messages sent by other clients to those

topics. When a message is published, it is sent first to the broker which determines the topic of

the message and which clients should receive the message depending on the topic. In our case,

we configured the ESP microcontroller as a client and the Raspberry Pi to broadcast a network

12

over which to communicate as well as acting as the broker and a client. This way, we can

broadcast commands from the Pi to the ESP’s wirelessly and receive data, also wirelessly, from

the ESP on the Raspberry Pi. As far as the code we used, this first consisted of adding two

libraries. These were Wifi.h to give us functions to control connection to a Wifi network and

PubSubClient.h to control the MQTT protocols. A full flow chart of the code used on the ESP32

DevkitC is shown in the appendix. In addition to the microcontroller firmware, we also wrote a

software script in python to control the MQTT protocols on the Raspberry Pi. In this script, we

imported paho.mqtt.client [12] as a library for functions to control the MQTT protocols, numpy

to do the give us array appending capabilities necessary for transporting data to CSV files, math

in order to convert between data types, and CSV to give us read/write capabilities on CSV files.

In the script itself, we have three main functions: on_message that deals with when a message is

received, on_connect to handle when the pi connects to the MQTT broker, and on_log to print

what’s going on. The bulk of the code happens in on_message allowing us to use different

messages being sent from the ESP32 to trigger protocols like adding data to a CSV file,

converting data between data types, and plotting.

Section 3.2.3: Data Processing/Analysis

 In our first phase of prototyping with the mBed NXP lcp1768 setup, we were able to take

data relating to the angle change of the calf and thigh while walking and convert them to data

regarding the height of the foot while walking. A plot of thigh and calf angles in degrees as well

as the calculated step height data in centimeters is shown below in figure 5. The x-axis of all

plots is a count of data points taken at approximately 100Hz.

13

Figure 5: Initial step height measurements.

This step height data contained a relatively high level of uncertainty with errors in the

centimeter range. This data for step height was calculated by measuring (by hand) the length of

the thigh and calf and using the angle change of the thigh and the calf to measure the height that

the foot has left the ground. This equation is shown in equation 1 where h is step height, T is the

length of the thigh, and C is the length of the calf. A model of the step that this equation

corresponds to is visually shown in figure 6 below where ߠ and ߮ refer to the angle change of

the thigh and calf respectively.

Equation 1: ݄ ൌ ܶ ∗ (ߠ)ݏ݋ܥ ൅ ܥ ∗ ߮)ݏ݋ܥ

14

Figure 6: Model of initial step height motion.

In phase two of prototyping, in addition to switching to a wireless capable

microcontroller, we also realized that our data had a large amount of error due to the effects of

poor alignment and, in some cases, gimbal lock which occurs when two of the three degrees of

freedom are driven into a parallel configuration. We made the decision to switch from measuring

the Euler pitch to measuring quaternions. Quaternions measure linear motion in the x, y, and z

axis as well as rotation w about an axis. By taking the dot product the initial quaternion and the

inverse of the final quaternion, we can get the cosine of half of the angle between the two. If we

then take the arccosine and multiply by 2, we can get the angle change about the axis of rotation

between the two quaternions. This is shown in equation 2 below where Q is a quaternion

consisting of w, x, y, and z coordinates.

݄݃݊ܽܥ ݈݁݃݊ܣ ൌ ଵ[2ିݏ݋ܿ ∗ (ܳ௜௡௜௧௜௔௟ ∙ (െܳ௙௜௡௔௟)] Equation 2

This is also shown visually in the appendix in figure 7 of the 30º angle change between parent

and child quaternions about the depicted axis. This measurement allows us to bypass the problem

of missing some angle data that was picked up in roll and yaw instead of pitch due to

misalignment of the sensor on the leg.

15

Figure 7: Quaternion coordinate visual representation.

 Regarding data analysis in this final phase of prototyping, we collected the CSV files that

resulted from the wireless communications between the Raspberry Pi and the microcontrollers.

In addition, we wrote an additional Python script that can take in and plot the data with a library

called Matplotlib. Note that the BNO device can report either the Euler angles or the quaternions.

As 4-coordinate descriptions of the rotation angles and axis orientations, quaternions have been

useful for directly measuring the net angle change about a specific axis. If we have two

quaternions--one at time = 0 (ܳଵ ൌ ܳ଴) and one at any time ranging from 0 to 3000 (ܳଶ ൌ

ܳ[଴ିଷ଴଴଴])--we can take the dot product of the first and the inverse of the second (see Equation 2,

Figure 8) to obtain the cosine of half of the net angle change between them. That is:

cos(
ߙ

ଶ
) = ܳଵ ∙ (െܳଶ) ൌ ଶݓଵݓ ൅ ଶݔଵݔ ൅ ଶݕଵݕ ൅ ଶ (Equation 3)ݖଵݖ

16

Figure 8: A visual way of finding and multiplying two quaternions over walking time

All of the quaternions are normalized so that ݓଶ ൅ ଶݔ ൅ ଶݕ ൅ ଶݖ ൌ 1, where the angle between

one orientation and itself is zero [13].

 So far, the multiplication of two quaternions gives us the thigh and calf angles that

change over the course of walking activity. Figure 9 displays such changes. Both plots not only

are representative of the typical angles each part of the leg makes, but they also display the

changes in one variable.

17

Figure 9: Quaternion-based net angle changes at the thigh (blue) and calf (red); 0 degrees signifies standing straight, other

angles indicate walking movement.

Unlike Euler angles, the quaternions are simpler at measuring the rotation angles that we need to

accurately calculate step height and other gait parameters.

 Euler angles are representative of a rotation that is about one of the main Euler axes: roll

(߶), pitch (ߐ), or yaw (ߖ). As we focus mainly on the pitch, if that is the only angle changing

dramatically at the calf, it can clearly demonstrate how much a limb can rotate, especially via the

net angle change (see Figure 10 below).

18

Figure 10: Our quaternion analysis can agree with the angle analysis when only the pitch (magenta) is changing significantly.

The roll and yaw angles do not make as much movement as the pitch is the primary axis that we

rotate about. If we have both the pitch and roll changing significantly at the thigh (see Figure

11), we will need to combine those two Euler angles or even all three of them. We will encounter

two challenges that come with Euler angles combinations.

Figure 11: Our quaternion analysis can also agree with the angle analysis when two or more Euler angles changing

significantly. A small flowchart is provided to understand how we could plot the total angle changes within a combined Euler
angle (see Figure 12).

First, we must find the dot product of each rotation matrix per angle, and we must extract the

Euler angle representations from the resulting rotation matrix.

19

 (Equation 4)

߮ோ ൌ ,ଷଶܴ)2݊ܽݐܿݎܽ ܴଷଷ) (Equation 5)

ோߠ ൌ (Equation 6) (ଵଷܴ)݊݅ݏܿݎܽ

߰ோ ൌ ,ଶଵܴ)2݊ܽݐܿݎܽ ܴଵଵ) (Equation 7)

,ݕ)2݊ܽݐܿݎܽ (ݔ ൌ

,(ݔ/ݕ)݊ܽݐܿݎܽ ൐ ݔ ݂݅ 0 (Equation 8)

 ൌ (ݔ/ݕ)݊ܽݐܿݎܽ ൅ ,ߨ ൏ ݔ ݂݅ 0, ൒ ݕ 0

 ൌ (ݔ/ݕ)݊ܽݐܿݎܽ െ ,ߨ ൏ ݔ ݂݅ 0, ൏ ݕ 0

 ൌ ൅ 2/ߨ, ൌ ݔ ݂݅ 0, ൐ ݕ 0

 ൌ െ 2/ߨ, ൌ ݔ ݂݅ 0, ൏ ݕ 0

 ൌ ,݂݀݁݊݅݁݀݊ݑ ൌ ݔ ݂݅ 0, ൌ ݕ 0

 Second, if we let combined rotation angle ߙோ ൌ ܴ௭(߰)ܴ௬(ߠ)ܴ௫(߮) and unit vector ̂ݎ be

the axis about which the rotation occurs, we will need to use ܿݏ݋(
ఈೃ

ଶ
),)݊݅ݏ

ఈೃ

ଶ
 to calculate all ݎ̂(

four coordinates of each quaternion. Theoretically,

20

 (Equation 9)

For the purpose of this project, however, we calculated them in a way that allows us to produce

the quaternions that are similar to those produced by the BNO device. Hence, for the quaternion

of combined rotation angle ܳோ ൌ ோݓ] , ோݔ , ோݕ , ,[ோݖ

ோ
ఈೃ

ଶ
 (Equation 10)

ோ
ఈೃ

ଶ
 (Equation 11)

ோ
௬

ଶ

௬

ଶ௦௜௡(
ഀೃ

మ
)

 (Equation 12)

ோ
௭

ଶ

௭

ଶ௦௜௡(
ഀೃ

మ
)

 (Equation 13)

 Figure 12 compares two plots with quaternion-based and Euler-based net angle changes

between two quaternions. If we look closer at the slight changes in the plot for the angular

changes between quaternions of a combined Euler angle, we can argue that that plot is a result of

the complicated math that we can avoid if the BNO quaternions are better at measuring angle

21

change. It is imperative to know this concept because we are rotating the initial axis of a limb

with the possibility of gimbal lock and other axes rotating. We would then have to waste time

doing the math to determine the most useful results for the net angle change.

Figure 12: A comparison between the Euler-based (violet) and quaternion-based (blue) net angle changes.

 The last task to complete under data processing is to obtain the total angle change applied

to a leg being lifted upward while the subject is sitting. This is based on the wireless quaternion

data from a single sensor device. Imagine sitting with a leg resting at 90 degrees; if we choose to

raise the lower part of the leg below the knee, we can typically say that our leg becomes

horizontal at 180 degrees. We can then visualize this change of up to 90 degrees when we

calculate the dot products of quaternions (see Figure 13).

22

Figure 13: Net angle changes at the raising leg during a sitting session.

To explain the smaller dips at time counts 50-60 and 70-80, the leg appears to be swinging at

smaller angles as a warmup between two complete cycles of leg-raising activity. If we confirm

that the leg in a sitting position can change angles from 90 to 180 degrees, then we should stress

that quaternions are simple enough to describe the rotations that usually occur in leg movements.

Section 4: Looking Forward

Due to time constraints and the necessity to work remotely for the last month or so of the

project, we were not able to deliver a finished and functioning product. Because of that, we

would like to take this section to outline the steps that we would have taken had we not been

time-constrained. In addition, as there is another group working on this effort for the 2020-2021

academic year, we hope to give them a sense of our thoughts on how to best complete the

project.

The first major component that we ran out of time completing is integrating multiple

sensors using MQTT Wifi communication between the Raspberry Pi and the ESP32

microcontroller. This process includes modifying both the ESP32 code and the MQTT python

23

script slightly in order to identify which sensor configuration each set of coordinates that is sent

to the Pi is coming from. Our idea for this was to publish coordinates from each ESP to a topic

labeled with that ESP’s location, for example: “Left Calf.” This way the data can be saved and

manipulated for each leg segment and then combined later for step height calculations. The

important component when integrating multiple sensors and microcontrollers into the system is

to ensure that all microcontrollers are subscribed to the “cmd” topic in order for synchronization

of starting and stopping data collection.

The second major component that we were unable to complete was an automated

calibration step that allowed the system to calculate the length of a subject’s calf and thigh leg

segments from a step. Our method for this was to have a specific routine outlined on the

microcontroller that takes quaternion data and measures the angle change when a subject steps

onto a block of known height and distance from the leg’s starting position. We can then use the

angle change information to calculate the length of the calf and thigh leg segments. A model of

this calibration step is shown below in figure 14 where h is the known height of the block and d

is the known distance from the leg’s starting position. In addition, the equations for C and T are

shown in equations 3 and 4.

(
೏

ೞ೔೙(ഇ)
ି

೓
భష೎೚ೞ(ഇ)

)

[(
೎೚ೞ(ക)షభ
భష೎೚ (ഇ)

)ା(
ೞ೔೙(ക)
ೞ೔೙(ഇ)

)]
 Equation 3

ௗ ି ஼௦௜௡(ఝ)

௦௜௡(ఏ)
 Equation 4

24

Figure 14: Calibration step model.

Once the system is calibrated and T and C are known, we can use them to determine step

height by subtracting Tcos(ߠ)and Ccos(߮)from T + C giving us h at every point in the dataset

where angle change is measured against the starting position. The final state of this data analysis

that we believe is most valuable to the health sciences effort is to look at the maximum step

height when the foot is parallel to the floor and present those values as individual step height

measurements for each step in a walk. This can be determined using a third sensor on the foot to

determine when the foot flex has near-zero angle change relative to the starting position.

25

Appendix:
Code A: DebugSubroutinesTeamUS.py

26

27

28

29

30

31

32

33

34

35

36

37

38

Code B: TeamUSDataProcessingFinal2020.py

39

40

References

[1] “Falls.” World Health Organization, World Health Organization, www.who.int/news-
room/fact-sheets/detail/falls.

[2] An Automated Gait Feature Extraction Method for Identifying Gait Asymmetry Using
Wearable Sensors. Arif Reza Anwary1, Hongnian Yu1, Michael Vassallo2.

[3] The effect of hip abductor fatigue on static balance and gait parameters. Wonjeong
Hwanga, Jun Ha Jangb, Minjin Huhb, Yeon Ju Kimb, Sang Won Kimb, In Ui Hongb, and Mi
Young Leeb

[4] CR2032 Battery. https://www.batteryjunction.com/panasonic-cr2032-
bulk.html?gclid=Cj0KCQjw7qn1BRDqARIsAKMbHDZVC0noGta2xe8_qEa5NcyxfxJN2A
Hfen8-AlZARjZY6FtguoGNSlwaAqf_EALw_wcB

[5] ARM Mbed LPC1768 Microcontroller. https://www.nxp.com/products/processors-and-
microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc1700-cortex-m3/arm-mbed-
lpc1768-board:OM11043

[6] Bosch BNO055 IMU. https://learn.adafruit.com/adafruit-bno055-absolute-orientation-
sensor

[7] mbed MAX32630FTHR. https://os.mbed.com/platforms/MAX32630FTHR/

[8] NodeMCU ESP8266 12-E. https://nodemcu.readthedocs.io/en/master/

[9] ESP32 Dev Kit 3C. https://www.espressif.com/en/products/devkits/esp32-
devkitc/overview

[10] 500mAh LiPo Battery. https://www.adafruit.com/product/1578

[11] Adafruit. “Adafruit Unified Sensor Library.” GitHub, 4 Feb. 2020,
github.com/adafruit/Adafruit_BNO055.

[12] “Paho-Mqtt.” PyPI, pypi.org/project/paho-mqtt/.

[13] “Rotations, Orientation, and Quaternions.” Rotations, Orientation, and Quaternions -
MATLAB & Simulink, www.mathworks.com/help/fusion/examples/rotations-orientation-and-
quaternions.html.

