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Section 1: Overview:

The World Health Organization reports that falls are the second-leading cause of accidental
death among senior adults around the world [1]. While individuals at any age can also fall, most
are able to pick themselves up and move along with their days. A few of them have reached beyond
age 60 and can face serious injuries even after only one fall.

Currently, a research team at William & Mary’s Department of Kinesiology & Health
Sciences attempts to recognize and correct aging-related factors that can result in falling. To meet
this goal, that team has administered a battery of tests but wants to either improve or redesign those
tests. Many of them have been videotaped to examine individual gait parameters of older subjects.
Unfortunately, the team undergoes a slow, laborious process of analyzing video frame by video
frame to measure step heights and angles without any way of automating this repetitive task.

Our team, namely the “Unstable Seniors”, is a group of EPAD students whose mission is
to develop a wireless, non-invasive product for the kinesiology team to improve and streamline
the data derived from a gait analysis test. Our tasks included calibration, microcontroller circuiting
and communications, CAD design, and time-series data processing. We want to use accelerometers
strapped to the legs to quickly and wirelessly provide quantitative data on step height and total
angular changes about a specific axis of a limb. Our collaboration with the Department of
Kinesiology & Health Sciences is expected to inspire sports doctors, physical therapists, and other
healthcare personnel to accurately and quantitatively describe how one walks.

This project was broken into two parts, initial technology down selection in the fall
semester and prototyping in the spring. The prototyping phase was further broken into three phases
in which we made significant steps toward a final product and then evaluated and made changes

at the end of each. These phases are referred to in the prototyping subsection of the technical



specifications section below. In addition, each phase of prototyping involved some amount of
hardware development, software development, and data processing. We have broken the

prototyping subsection into three parts according to these three main components of the projects.

Section 2: Project Planning

In this section, we outline the general timeline and planning in the fall semester and then
in the spring semester. This section is intended to outline the general timeline of the project
rather than to give technical details about each element. We will delve further into the technical

details in the following section entitled: “Technical Specifications.”

Subsection 2.1: Down Selection (Fall Semester):

During the fall, this project was broken into two phases. The first phase that took us to
about the midpoint in the fall semester was our initial idea phase to come up with some options
for products that might be useful to the health sciences gait analysis effort in their fall risk
prevention research. In order to do this, we met with the health sciences team and watched an
hour or so of data collection in its current form for them. We then researched different ways that
the health sciences team’s gait test could be changed. Each of the four team members researched
a topic and we came up with four initial ideas to consider. These included measuring hip
abduction and adduction strength, step pressure mapping, gait mapping with IMU sensors [2],
and gait mapping with computer vision. Each team member researched a single initial topic for
the first few weeks of the project until mid-October when we made our initial down selection.
Due to concerns about the ability to test hip adduction/abduction strength of seniors and the lack
of viability shown in the step pressure sensing efforts, the team chose to pursue the two gait

mapping related efforts for the remainder of the fall semester.



In this second phase of the fall segment of this project, we took our two remaining ideas
and added a team member to each since two team members had their ideas down selected. In this
second phase, Nate and Lee worked on gait mapping with IMU sensors and Martha and Colm
(who was not working with the team during the spring) worked on using computer vision to
measure step height. We remained working in these teams of two to show the initial viability of
each of these two ideas until the last week of classes in December where we made our final down
selection. At that point, we decided to pursue a product based on Bosch BNOO0S55 inertial
measurement unit sensors. At this point, we broke up a few tasks that could be worked on during
the winter break. Nate took the lead on developing an initial model of a mounting system for the
device, Martha and Colm agreed to work on some initial data processing scripts written in
Python, and Lee took the lead on writing the software for the microcontroller controlling the

BNOO0S5S5 sensor.

Subsection 2.2: Prototyping (Pre-COVID-19):

With the beginning of the second semester came the switch towards wireless
communication. Leading this charge was the ESP8266 wireless microcontroller. The chip
features an onboard Wifi chip, which we can implement alongside a Raspberry Pi to create a
closed system in which we can wirelessly take data and transmit back to the host device. By
implementing an MQTT protocol to connect the Pi to an array of ESP devices, our wireless
prototype took shape. The ESP device was able to seamlessly connect to our Raspberry Pi’s
Network, and we were able to transmit data from the BNOOS55 through the ESP chip and across
the MQTT network; however, the chip is, at this point, still relying on wired power, and is not
free from USB tethers for serial communication. This challenge leads to the next prototyping

stage, which began with the move to off-campus development due to Covid-19.
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Subsection 2.3: Prototyping (Post-COVID-19):

Upon our transition to remote instruction, we reduced the number of wireless
microcontroller sensors to one. We were able to have the Raspberry Pi establish its own WiFi
protocols to transmit data with one or more ESP32 devices. Running an MQTT Python script
inside the Pi serves as a way to start and stop the quaternion data collection via the ESP32. This
step leads to data communications between ESP32 and the Pi for the publication of CSV files
containing quaternion coordinates and rotation angle changes. At this time, we had the option to
post-process that information before we can restart device communications as we were using a

single sensor. Future prototyping will be up to next year’s cohort of EPAD students.

Section 3: Technical Specifications

In this section, we go into greater detail about the technical elements of our project. We
begin with section 3.1 talking about the initial ideas for potential technologies and how we
narrowed them to a final idea to pursue in prototyping. We then delve deeper into the

prototyping phases and the individual components involved in that process.

Subsection 3.1: Down-Selection

In order to best satisfy the client’s desire for improved data collection and analysis,
several methods of automated testing were considered. Each test was designed to output
quantitative data for nearly instantaneous analysis. These ideas will be discussed in-depth, as
well as the review process for selecting a single procedure to produce data of interest to our
client. In the following subsections, we discuss each of our initial potential technologies and

discuss the reasons that they were eventually down selected.



Subsection 3.1.1: Initial Down Selection

Subsection 3.1.1.1: Hip Abduction/Adduction Strength

It has been shown that the strength of the hip abductor muscle groups is correlated with
balance and support [3]. In order to test a subject’s strength in this area, a sitting test was
proposed in which a dynamometer would be used to the maximum torque a subject could
produce from their hip abductors. From this data, a model could be created to illustrate the

correlation between applied torque and force per unit length and propensity for falling accidents.

Subsection 3.1.1.2: GAITRite Data Decoding

The client also provided a GAITRite mat for potential use. This mat consists of a densely
packed array of pressure sensors that are able to map a person’s gait and the relative pressure on
different locations of their feet during footfall. It was thought that this data might be captured
from the proprietary system and used in further analysis. If possible, this data could be stored,

and easily added to a model to predict falling accidents based on anomalies in gait patterns.

Subsection 3.1.1.3: Computer Vision

The main dataset that the client wishes to gather is on step height. The team has devised
two potential methods for measuring this parameter. The first is a system utilizing small cameras
mounted to the foot, followed by post-processing using computer vision to determine the step
height using natural rulers in the foreground and background of the image. The use of computer
vision algorithms would allow research teams to quickly gather qualitative data from existing

video.

Subsection 3.1.1.4: Inertial Measurement Units

The second method for gathering step height data was devised by mounting an array of

inertial measurement sensors along a subject’s legs. By collecting a time series of angle



measurements along the quad, calf, and foot, a digital representation of a person’s gait may be
created, and by creating the right trigonometric model, a person’s step height may be calculated
at any point.

At the end of this initial down selection phase, the team narrowed its focus from four
initial ideas down to two to pursue further. Firstly, while the research behind the hip abductor
test points towards a good indication of stability, it was determined that the test would not prove
applicable in the needed context. In order to accurately measure the correct muscle groups, the
subject must be laying down; merely sitting in a chair would offer brace points, and the data
collected would not accurately reflect the strength of the subject’s hip abductors. The subject
must be laying down to isolate the abductor muscle group, which is not feasible given the
potential lack of mobility in the subjects. As such, this test was dropped in pursuit of better
options. The GAITRite mat provided by the client also proved to be a difficult endeavor. The
propriety program would not allow data extraction outside of the GAITRite environment, so the

mat will have to remain outside of the developing tests.

Subsection 3.1.2: Final Down Selection

Finally, after exploring the possibility of using computer vision throughout the first half
of the project timeline, potential pitfalls of the system became apparent. The system offered too
much variation in background and camera mounting position, as well as physical limitations in
size of camera and needed refresh rates and resolutions. It was simply too difficult to get usable
footage, and accurately analyze footage consistently. Thus this idea, while offering the benefit of
integrating with the existing dataset, was not feasible.

Our final system, relying on wireless sensor units transmitting spatial data to build a

digital representation of one’s gait, proved to be the most viable. The system uses small, coin-



sized sensors, and offers a non-invasive way to gather high-resolution data. The Inertial
Measurement devices we chose, the BNOOSS5, offers data stream at 20Hz, without output in
Euler angles (3-dimensional representation of rotation around 3 orthogonal axis, with the z-axis
directed through the Earth’s center of gravity) and/or Quaternions (a system using 3 real axis and
a fourth imaginary axis of rotation). In order to escape phenomena such as gimbal lock- the
alignment of axes during rotation, and subsequent data loss, quaternions are chosen as
measurement values. This also allows angle changes to be immediately calculated, as the dot
product of 2 quaternions results in the half-angle rotation between them. This promising method
of data-collection allowed the team to push forward with prototyping a wireless system to deliver

real-time, accurate data for computational analysis.

Subsection 3.2: Prototyping

This section will be broken into three as there were three main components to the
prototyping phase of our project. These are hardware development which includes, first, the
mounting system and microcontroller chip selection. Second, software/firmware development
which includes the code used to control the Raspberry Pi, the microcontroller + sensor
configuration, and the data collection algorithm in general. Finally, data processing and analysis
which includes the post processing and plotting of data once it had been taken. As mentioned in
the project planning section, these were the lines across which we divided the workload during

the prototyping section of the year.

Section 3.2.1: Hardware Development:

The first two iterations of the mounting system were designed to house a coin cell battery
[4], an mBed NXP Icp1768 microcontroller [5], and the BNOOS5S5 [6] breakout board. These are

shown below in figure 1.
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Figure 1: Prototype mounting systems versions 1 and 2

The first iteration (version 1) features a self-locking mechanism where the top of the model
slides on and twists to lock over the bottom. In theory, the BNOO055 board would be stacked on
top of the mBed microcontroller in the larger slot and the coin cell would slide into the smaller
slot. This self-locking proved to be difficult to manufacture without significant post processing
after printing and it was bulkier than necessary. The second iteration (version 2) locks with
screws in threaded slots in the corners of the model and contains embedded slots for Velcro
straps rather than extruded handles. It did, however, feature the same stacking layout of
components. This proved to be more robust but the slots for Velcro straps proved difficult to 3D
print and the stacking layout made it much taller than necessary leading to bouncing when in use.
We then moved on to the second phase of prototyping. In this phase we began looking at
wireless data collection. We made the decision to move to a different mBed based
microcontroller called an mBed MAX32630FTHR|[7]. This microcontroller is designed to run on

battery power, contains a port to plug in a rechargeable battery, and supports Bluetooth and BLE



communication making it an ideal choice for a wearable sensor configuration. After considerable
work on the part of Lee and Dr. Cooke to try to make the mBed MAX32630FTHR chip function
with BLE communication, we were forced to abandon the idea due to lack of functionality and
time constraints. We were also able to fabricate another iteration of a mounting system as shown
in figure 2 below. This version was configured to fit 2 coin cells in series in the circular slot, the
mBed MAX32630FTHR, and the BNOOS55 board in different slots rather than stacked. This
version is shorter and less subject to bounce as a person walks. It contains springs to hold
batteries, sensor, and microcontroller more firmly in place. Finally, it contains outward slots for
Velcro straps that are more feasible to produce and reuse than the inward, rounded slots on the
previous model. The microcontroller and sensor are both shown in figure 5 mounted inside the

model.
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Figure 2: Prototype Mounting System Version 3.

In the third phase of prototyping, we switched our microcontroller to a Wifi based chip
called an ESP8266 NodeMCU 12-E [8] and then later to an updated version of the same chip

called an ESP32 DevKit 3C [9]. These were necessary to make wireless communication between



microcontroller and raspberry Pi function successfully. We also switched to a Lithium Polymer
battery[10] after the first few tests at fully wireless data collection and learning that the coin cell
circuit could not provide the necessary current to the microcontroller system. This is shown

below in figure 3.

Figure 3:Lithium polymer battery, part number 1528-1841-ND on Digikey.com

This battery is shown in figure 14 along with its part number. To go along with these last
hardware changes, we fabricated a final mounting system model as shown in figure 4. This
model is shorter than the previous as it stacks the BNOO055 board and the Lithium Polymer
battery and has larger arms holding the Velcro straps in place than the previous model. This

allows it to be both more robust than previous models as well as slightly smaller.

Figure 4: Final Mounting System.
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Section 3.2.2: Software/Firmware Development:

In our first phase of prototyping, we worked with an mBed NXP lcp1768 microcontroller
and the BNOOS55 breakout board. In this initial phase, the only code used was the firmware
written to control the microcontroller. This consisted of the use of 4 libraries in an Arduino file
and some base code to get sensor readings. The first of these libraries was wire.h which
initializes [2C communication between the computer and the microcontroller. The second was
Adafruit Sensor.h which is adafruit’s sensor driver library. This allows the program to
communicate with the adafruit sensor. The third library was Adafruit BNOO0S55.h which contains
functions specific to the initialization and use of the BNOOS55 chip that is embedded on the
Adafruit breakout board we were using. Finally, we included utility/imumaths.h which allows
the Arduino script to understand the output of the BNOO0S5S5 output.[11]

In the second phase of prototyping, not much changed on the software side as we were
unable to get the wireless capabilities of the mBed MAX32630FTHR to function. In the third
phase, however, we had to change the Arduino code dramatically to incorporate the Wifi
communication. We chose to use MQTT broker/client protocols as our mode of Wifi based
communication between the microcontroller and a Raspberry Pi 4 to do our data collection.
MQTT communication works by configuring devices as clients all connected to the same
network as each other and as the central broker. Clients have the capability to publish messages
to a topic as well as to subscribe to topics and receive messages sent by other clients to those
topics. When a message is published, it is sent first to the broker which determines the topic of
the message and which clients should receive the message depending on the topic. In our case,

we configured the ESP microcontroller as a client and the Raspberry Pi to broadcast a network

11



over which to communicate as well as acting as the broker and a client. This way, we can
broadcast commands from the Pi to the ESP’s wirelessly and receive data, also wirelessly, from
the ESP on the Raspberry Pi. As far as the code we used, this first consisted of adding two
libraries. These were Wifi.h to give us functions to control connection to a Wifi network and
PubSubClient.h to control the MQTT protocols. A full flow chart of the code used on the ESP32
DevkitC is shown in the appendix. In addition to the microcontroller firmware, we also wrote a
software script in python to control the MQTT protocols on the Raspberry Pi. In this script, we
imported paho.mgqtt.client [12] as a library for functions to control the MQTT protocols, numpy
to do the give us array appending capabilities necessary for transporting data to CSV files, math
in order to convert between data types, and CSV to give us read/write capabilities on CSV files.
In the script itself, we have three main functions: on_message that deals with when a message is
received, on_connect to handle when the pi connects to the MQTT broker, and on_log to print
what’s going on. The bulk of the code happens in on_message allowing us to use different
messages being sent from the ESP32 to trigger protocols like adding data to a CSV file,

converting data between data types, and plotting.

Section 3.2.3: Data Processing/Analysis
In our first phase of prototyping with the mBed NXP Icp1768 setup, we were able to take

data relating to the angle change of the calf and thigh while walking and convert them to data
regarding the height of the foot while walking. A plot of thigh and calf angles in degrees as well
as the calculated step height data in centimeters is shown below in figure 5. The x-axis of all

plots is a count of data points taken at approximately 100Hz.
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Figure 5: Initial step height measurements.

This step height data contained a relatively high level of uncertainty with errors in the
centimeter range. This data for step height was calculated by measuring (by hand) the length of
the thigh and calf and using the angle change of the thigh and the calf to measure the height that
the foot has left the ground. This equation is shown in equation 1 where h is step height, T is the
length of the thigh, and C is the length of the calf. A model of the step that this equation
corresponds to is visually shown in figure 6 below where 8 and ¢ refer to the angle change of
the thigh and calf respectively.

Equation 1: h = T xCos(6) + C * Cos(p
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Figure 6: Model of initial step height motion.

In phase two of prototyping, in addition to switching to a wireless capable
microcontroller, we also realized that our data had a large amount of error due to the effects of
poor alignment and, in some cases, gimbal lock which occurs when two of the three degrees of
freedom are driven into a parallel configuration. We made the decision to switch from measuring
the Euler pitch to measuring quaternions. Quaternions measure linear motion in the X, y, and z
axis as well as rotation w about an axis. By taking the dot product the initial quaternion and the
inverse of the final quaternion, we can get the cosine of half of the angle between the two. If we
then take the arccosine and multiply by 2, we can get the angle change about the axis of rotation
between the two quaternions. This is shown in equation 2 below where Q is a quaternion
consisting of w, X, y, and z coordinates.

Angle Chang = cos™*[2 * (Qumitiar * (—Qfina)] Equation 2
This is also shown visually in the appendix in figure 7 of the 30° angle change between parent
and child quaternions about the depicted axis. This measurement allows us to bypass the problem
of missing some angle data that was picked up in roll and yaw instead of pitch due to

misalignment of the sensor on the leg.
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Figure 7: Quaternion coordinate visual representation.

Regarding data analysis in this final phase of prototyping, we collected the CSV files that
resulted from the wireless communications between the Raspberry Pi and the microcontrollers.
In addition, we wrote an additional Python script that can take in and plot the data with a library
called Matplotlib. Note that the BNO device can report either the Euler angles or the quaternions.
As 4-coordinate descriptions of the rotation angles and axis orientations, quaternions have been
useful for directly measuring the net angle change about a specific axis. If we have two
quaternions--one at time = 0 (Q; = Q) and one at any time ranging from 0 to 3000 (Q, =
Qo-3000))--We can take the dot product of the first and the inverse of the second (see Equation 2,

Figure 8) to obtain the cosine of half of the net angle change between them. That is:

COS(%) =Q1 " (—Q2) =wiwy + x1X, + V1Y, + 212, (Equation 3)
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Quaternion Axis Rotations for THIGH
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Figure 8: A visual way of finding and multiplying two quaternions over walking time

All of the quaternions are normalized so that w? + x? + y? + z2 = 1, where the angle between

one orientation and itself is zero [13].

So far, the multiplication of two quaternions gives us the thigh and calf angles that

change over the course of walking activity. Figure 9 displays such changes. Both plots not only

are representative of the typical angles each part of the leg makes, but they also display the

changes in one variable.

16
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Figure 9: Quaternion-based net angle changes at the thigh (blue) and calf (red), 0 degrees signifies standing straight, other
angles indicate walking movement.

Unlike Euler angles, the quaternions are simpler at measuring the rotation angles that we need to
accurately calculate step height and other gait parameters.

Euler angles are representative of a rotation that is about one of the main Euler axes: roll
(¢), pitch (O), or yaw (¥). As we focus mainly on the pitch, if that is the only angle changing
dramatically at the calf, it can clearly demonstrate how much a limb can rotate, especially via the

net angle change (see Figure 10 below).
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Figure 10: Our quaternion analysis can agree with the angle analysis when only the pitch (magenta) is changing significantly.

The roll and yaw angles do not make as much movement as the pitch is the primary axis that we
rotate about. If we have both the pitch and roll changing significantly at the thigh (see Figure
11), we will need to combine those two Euler angles or even all three of them. We will encounter

two challenges that come with Euler angles combinations.
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Figure 11: Our quaternion analysis can also agree with the angle analysis when two or more Euler angles changing
significantly. A small flowchart is provided to understand how we could plot the total angle changes within a combined Euler
angle (see Figure 12).

First, we must find the dot product of each rotation matrix per angle, and we must extract the

Euler angle representations from the resulting rotation matrix.
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z X
[y} = R,(y)R,(0)R.(¢) [y}

Z
[cosyy —siny 0 cosf 0 sinf][1 0 0 X
= |sinyy cos¥ O 0 1 0 0 cos¢p —sing||Y
L 0 0 1|/ [—sinf@ 0 cos@] [0 sing cos¢ Z
[cosfcostp —cos¢gsiny +sindsinfcosty  singsiny + cos ¢sinfcosy X
= | cosf@siny cos¢dcost +singsinfsinyy —singcosy + cosdsinfsinyg | | Y
| —sinf sin ¢ cos 0 cos ¢ cos @ Z (Equation 4)
pr = arctan2(R3,, R33) (Equation 5)
O = arcsin(R3) (Equation 6)
Yr = arctan2(R,1, Ry1) (Equation 7)
arctan2(y,x) =
arctan(y/x),if x > 0 (Equation 8)

= arctan(y/x) + w,if x < 0,y =0

= arctan(y/x) — m,if x < 0,y <0
= +mn/2,ifx =0,y >0
= —n/2,if x = 0,y <0

= undefined,if x = 0,y =0

Second, if we let combined rotation angle ag = R,(¥)R,, (8)R,(¢) and unit vector # be
. . . . ar . AR~ A
the axis about which the rotation occurs, we will need to use COS(7), sm(7)r to calculate all

four coordinates of each quaternion. Theoretically,
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(Equation 9)

For the purpose of this project, however, we calculated them in a way that allows us to produce
the quaternions that are similar to those produced by the BNO device. Hence, for the quaternion

of combined rotation angle Qg = [Wg, X, V&, Zr ],

Wi = COS(O;—R) (Equation 10)
Xp = Sin(%)sin(90)cos(180) (Equation 11)
yr = 0.01 * (—) * cos(sz( )) (Equation 12)
zp = 0.01 * (—) * COS(zsm( ) (Equation 13)

Figure 12 compares two plots with quaternion-based and Euler-based net angle changes
between two quaternions. If we look closer at the slight changes in the plot for the angular
changes between quaternions of a combined Euler angle, we can argue that that plot is a result of

the complicated math that we can avoid if the BNO quaternions are better at measuring angle
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change. It is imperative to know this concept because we are rotating the initial axis of a limb
with the possibility of gimbal lock and other axes rotating. We would then have to waste time

doing the math to determine the most useful results for the net angle change.
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Figure 12: A comparison between the Euler-based (violet) and quaternion-based (blue) net angle changes.

The last task to complete under data processing is to obtain the total angle change applied
to a leg being lifted upward while the subject is sitting. This is based on the wireless quaternion
data from a single sensor device. Imagine sitting with a leg resting at 90 degrees; if we choose to
raise the lower part of the leg below the knee, we can typically say that our leg becomes
horizontal at 180 degrees. We can then visualize this change of up to 90 degrees when we

calculate the dot products of quaternions (see Figure 13).
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Figure 13: Net angle changes at the raising leg during a sitting session.

To explain the smaller dips at time counts 50-60 and 70-80, the leg appears to be swinging at
smaller angles as a warmup between two complete cycles of leg-raising activity. If we confirm
that the leg in a sitting position can change angles from 90 to 180 degrees, then we should stress

that quaternions are simple enough to describe the rotations that usually occur in leg movements.

Section 4: Looking Forward

Due to time constraints and the necessity to work remotely for the last month or so of the
project, we were not able to deliver a finished and functioning product. Because of that, we
would like to take this section to outline the steps that we would have taken had we not been
time-constrained. In addition, as there is another group working on this effort for the 2020-2021
academic year, we hope to give them a sense of our thoughts on how to best complete the
project.

The first major component that we ran out of time completing is integrating multiple
sensors using MQTT Wifi communication between the Raspberry Pi and the ESP32

microcontroller. This process includes modifying both the ESP32 code and the MQTT python
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script slightly in order to identify which sensor configuration each set of coordinates that is sent
to the Pi is coming from. Our idea for this was to publish coordinates from each ESP to a topic
labeled with that ESP’s location, for example: “Left Calf.” This way the data can be saved and
manipulated for each leg segment and then combined later for step height calculations. The
important component when integrating multiple sensors and microcontrollers into the system is
to ensure that all microcontrollers are subscribed to the “cmd” topic in order for synchronization
of starting and stopping data collection.

The second major component that we were unable to complete was an automated
calibration step that allowed the system to calculate the length of a subject’s calf and thigh leg
segments from a step. Our method for this was to have a specific routine outlined on the
microcontroller that takes quaternion data and measures the angle change when a subject steps
onto a block of known height and distance from the leg’s starting position. We can then use the
angle change information to calculate the length of the calf and thigh leg segments. A model of
this calibration step is shown below in figure 14 where h is the known height of the block and d
is the known distance from the leg’s starting position. In addition, the equations for C and T are

shown in equations 3 and 4.

d h
C = (sin(e)_l—cos(e)) ‘
= [(cos((p)—l)_l_(Sin(QD))] Equation 3
1—co (0) sin(0)
T — d — Csin(¢g) Eouation 4
sin ( 0) quation
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Tcos(B) —

Ccos(d) —

Figure 14: Calibration step model.

Once the system is calibrated and T and C are known, we can use them to determine step
height by subtracting Tcos(8)and Ccos(¢)from T + C giving us h at every point in the dataset
where angle change is measured against the starting position. The final state of this data analysis
that we believe is most valuable to the health sciences effort is to look at the maximum step
height when the foot is parallel to the floor and present those values as individual step height
measurements for each step in a walk. This can be determined using a third sensor on the foot to

determine when the foot flex has near-zero angle change relative to the starting position.
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Appendix:
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May 2020

$# Import the following libraries.
import matplotlib.pyplot as plt

import numpy
import csv
import math

as np

class PlotThigh:
§ PURPOSE: Plot the total angle change about the axis of the thigh.

Code A: DebugSubroutinesTeamUS.py

Lee Bradley, Martha Gizaw, Nate Winneg
Engineering Physics Capstone Project
Unstable Seniors: Data Processing

$ Initialize the Euler and quaternion CSV input variables as empty arrays.

def _ init__ (self, xThighRoll

[1, yThighRoll = [], xThighPitch = [],

yThighPitch = [], xThighYaw = [], yThighYaw = [],

xThigh

£ Euler angles

self.

self

iw,
self

xThighRoll

.yThighRoll
self.
self.
self.
self.

xThighPitc
yThighPitc
xThighYaw
yThighYaw

X, Y, and

.xThighW =
self.
self.
self.
self.

yThighwW =
xThighX =
yThighX =
xThighY =

W = []1, yThighwW
xThighY = [], yThighy
changeThigh = []):

= xThighRoll
yThighRoll

h = xThighPitch
h = yThighPitch
= xThighYaw

= yThighYaw

= []1, xThighX = [], yThighX
= [1, xThighz = [], yThigh3z

1.
1.

2 coordinates in a quaternion

xThighW
yThighW
xThighX
yThighX
xThighY

25



35 self.yThighY = yThighY

36 self.xThighZz = xThigh2

37 self.yThighz = yThigh2

38

39 $ For finding the net angles changes about the limb's axis

40 self.changeThigh = changeThigh

41

42 # Execute the CSV readers, and append the data to the appropriate arrays
43 $ for each Euler angle to be plotted.

44 $ For presentation purposes, set the Euler angles

45 $# to zero at the initial time of the user selected interval, where we can describe
46 $ the events of a single cycle of leg motion (eg, walking, sitting, etc.)
47 def suler_angle_thigh(self, xThighRoll, yThighRoll, xThighPitch, yThighPitch,

xThighYaw, yThighYaw):

48 figThigh, axsThigh = plt.subplots(3, sharex = True, sharey = False)
49 figThigh.suptitle ('Euler Axis Rotations for THIGH')

S50

51 with open('angles_thigh roll2.csv', 'r') as csvfile:

52 plots = csv.reader (csvfile, delimiter=',"')

53 for row in plots:

54 xThighRoll.append (float(row[0]))

55 yThighRoll.append (float (row[1]))

56 setRoll2Zero = []

57 for t in range(0, len(xThighRoll)):

58 setRoll2Zero.append (yThighRoll[t]-yThighRoll[500])

59 axsThigh[0] .plot (xThighRoll, setRoll2Zero, linewidth = 2, color='teal')
60 axsThigh[0] .set(xlabel="", ylabel='Roll"')

61 axsThigh[0] .set_x1im(500, 750)

62 axsThigh[0] .set_ylim(20, -20)

63

64 with open('angles_thigh pitch2.csv', 'r') as csvfile:

€5 plots = csv.reader(csvfile, delimiter=",")

€6 for row in plots:

67 xThighPitch.append (float(row[0]))

68 yThighPitch.append (float(row([1]))

69 setPitch2Zero = []

70 for t in range(0, len(xThighPitch)):

71 setPitch2Zero.append (yThighPitch[t]-yThighPitch[500])

72 axsThigh[l] .plot (xThighPitch, setPitch2Zero, linewidth = 2, color='magenta')
73 axsThigh[l] .set(xlabel=""',6 ylabel='Pitch')

74 axsThigh([1l] .set_x1im (500, 750)

75 axsThigh[l] .set_ylim(50, -50)

76

77 with open('angles_thigh yaw2.csv', 'r') as csvfile:

78 plots = csv.reader(csvfile, delimiter=",")

79 for row in plots:

80 xThighYaw.append (float(row([0]))

81 yThighYaw.append (float(row[1]))

82 setYaw2Zero = []

83 for t in range(0, len(xThighYaw)):

84 setYaw2Zero.append (yThighYaw[t]-yThighYaw[500])

85 axsThigh[2] .plot (xThighYaw, setYaw2Zero, linewidth = 2, color='black')
86 axsThigh[2] .set(xlabel=""',6 ylabel='Yaw')

87 axsThigh[2] .set_x1im(500, 750)

88 axsThigh[2] .set_ylim(20, -20)

89

90 $ optional!

91 § figThigh.show()

92

93 $# Execute the CSV readers, and append the data to the appropriate arrays
94 $ for each quaternion to be plotted.

95 def guaternion_thigh(self, xThighW, yThighW, xThighX, yThighX, xThighy,
96 yThighY, xThighZ, yThigh32):

97 figQuats, axsQuats = plt.subplots(4, sharex = True, sharey = False)
98 figQuats.suptitle('Quaternion Axis Rotations for THIGH')

99
100 with open('angles thigh W2.csv', 'r') as csvfile:
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101 plots= csv.reader (csvfile, delimiter=',")

102 for row in plots:

103 xThighW.append (float (row[0]))

104 yThighW.append (float(row[1]))

105 axsQuats[0] .plot (xThighW, yThighW, color='blue')

106 axsQuats[0] .set(xlabel=""', ylabel='W'")

107 axsQuats[0] .set_x1im (500, 750)

108

109 with open('angles_thigh X2.csv', 'r') as csvfile:

110 plots= csv.reader(csvfile, delimiter=',")

111 for row in plots:

112 xThighX.append (float(row([0]))

113 yThighX.append (float(row[1]))

114 axsQuats[1l] .plot (xThighX, yThighX, color='red')

115 axsQuats[l] .set(xlabel=""', ylabel='X")

116 axsQuats[l].set_x1im(500, 750)

117

118 with open('angles_thigh Y2.csv', 'r') as csvfile:

119 plots= csv.reader(csvfile, delimiter=",")

120 for row in plots:

121 xThighY.append (float (row([0]))

122 yThighY.append (float(row[1]))

123 axsQuats[2] .plot (xThighY, yThighY, color='green')

124 axsQuats[2] .set(xlabel="", ylabel='Y")

125 axsQuats[2] .set_x1im (500, 750)

126

127 with open('angles_thigh z2.csv', 'r') as csvfile:

128 plots= csv.reader(csvfile, delimiter=',")

129 for row in plots:

130 xThighZ.append (float(row[0]))

131 yThighZ.append (float(row[1]))

132 axsQuats[3] .plot (xThighZz, yThighZ, color='orange')

133 axsQuats[3] .set(xlabel="Time (count)',6 ylabel='2")

134 axsQuats[3].set_x1im (500, 750)

135

136 § optional!

137 § figQuats.show()

138

139 $ Calculate 2 times the inverse cosine

140 $ of the dot product between two quaternions, and convert the net angle

141 $# change to degrees. Show the plots!

142 def dot_product_thigh(self, xThighW, yThighW, xThighX, yThighX, xThighY,

143 yThighY, xThighz, yThighZ, changeThigh):

144 oneRad2Degrees = 57.296

145 changeThighFix = []

146 for tl in range (0, len(xThighW)):

147 changeThigh.append (np.arccos (np.minimum(l, yThighW[0]*yThighWw[tl] +

148 yThighX[0]*yThighX[t1] +

149 yThighY[0] *yThighY[t1l] +

150
yThighz[0] *yThighz[t1]))*(180/np.pi) - (oneRad2D
egrees/2))

151

152 for t2 in range (0, len(xThighW)):

153 changeThighFix.append (changeThigh[t2] -changeThigh[500])

154

155 fig, axs = plt.subplots()

156 axs.set_title('Quaternion-Based Net Angle Changes for THIGH')

157 axs.plot (changeThighFix, color='blue')

158 axs.set_x1im (500, 750)

159 axs.set_ylim(-20, 20)

160 axs.set(xlabel='Time (seconds)', ylabel='Total Angle Change (degrees)")

161 axs.invert_yaxis()

162 positions = (500, 550, 600, €50, 700, 750)

163 labels = (14.42, 15.86, 17.30, 18.75, 20.19, 21.63)

164 plt.xticks (positions, labels)

165 fig.show()
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166

167 § Combine the Euler angles when more than one are changing significantly.

168 def euler_ combo_thigh(self, xThighRoll, yThighRoll, yThighPitch, yThighYaw,

169 yThighY, yThigh2):

170

171 $ Initialize the following variables for Euler-based net angle changes.

172 theta_array = []

173 R =[]

174

195 combinedEulerX = []

176 combinedEulerY = []

177 combinedEulerz = []

178

179 combinedNetAngle = []

180 undoCombinedCos = []

181 undoCombinedSin = []

182

183 combinedQuatW = []

184 combinedQuatX = []

185 combinedQuatY = []

186 combinedQuatz = []

187

188 rebuildCombined = []

189 rebuildCombinedFix = []

190

191 $ Convert the original Euler angles into rotation matrices to be all

192 $ multiplied.

193 for t3 in range (0, len(xThighRoll)):

194 theta = [yThighRoll[t3] * (np.pi/180), yThighPitch[t3]* (np.pi/180),
yThighYaw[t3]* (np.pi/180)]

195 theta_array.append(theta)

196

197 R x = np.array([[1, 0, 0 1,

198 [o, math.cos(theta[0]), -math.sin(theta[0]) 1],

199 [o, math.sin(theta[0]), math.cos(theta[0]) ]

200 1)

201

202

203

204 R_y = np.array([[math.cos(theta[l]), 0, math.sin(theta[l]) 1,

205 [o, y 0 | g

206 [-math.sin(theta[l]), o, math.cos (theta[l]) 1]

207 1

208

209 R_z = np.array([[math.cos(theta[2]), -math.sin(theta[2]), o).

210 [math.sin(theta[2]), math.cos (theta[2]), 01,

211 [o, 0, 1]

212 1)

213

214 R.append(np.dot(R_x, np.dot(R_y, R _z)))

215

216 $# Report the new Euler rotations about their axes from the resultant

217 $ rotation matrix.

218 combinedEulerX.append (math.atan2 (R[t3][2,1], R[t3][2,2]))

219 combinedEulerY.append (math.asin(R[t3][0,2]))

220 combinedEulerz.append (math.atan2 (R[t3][1,0], R[t3][0,0]))

221

222 $ Obtain the cosine and sin of half of one of the new Euler rotations.

223 combinedNetAngle.append (combinedEulerY[t3] * (180/np.pi))

224 undoCombinedCos .append (np.cos (combinedNetAngle[t3] * (np.pi/360)))

225 undoCombinedSin.append (np.sin (combinedNetAngle[t3] * (np.pi/360)))

226

227 $ Compute all 4 quaternion coordinates.

228 combinedQuatW.append (undoCombinedCos [t3])

229 combinedQuatX.append (undoCombinedSin[t3] * np.sin(0.5*np.pi) * np.cos(np.pi))

230 combinedQuatY.append(0.01 * (yThigh¥[t3] / 2) *
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231

233

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
26l

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

284
285
286
287
288
289
290
291
292
293
294

np.cos (yThigh¥[£3]/ (undoCombinedSin[t3])))
combinedQuatZ.append (0.01 * (yThighz[t3] /] 2) *
np.cos (yThighz[t3]/ (undoCombinedSin[t3])))

$ Use the coordinates above to find the combined-Euler based net angle

change.

rebuildCombined.append(np.arccos (np.minimum (1,
combinedQuatW[0]*combinedQuatW[t3] +
combinedQuatX([0]*combinedQuatX[t3] +
combinedQuatY[0]*combinedQuatY[t3] +
combinedQuatz[0] *combinedQuatz[t3])) *(180/np.pi))

§ Set the net angle change to zero at the beginning of the plot interval.
for t4 in range (0, len(xThighRoll)):
rebuildCombinedFix.append (rebuildCombined[t4] -rebuildCombined[500])

$¢ Show the plots!

fig, axs = plt.subplots()

axs.set_title('Euler-Based Net Angle Changes for THIGH')
axs.plot (rebuildCombinedFix, color='violet"')
axs.set_xlim(500, 750)

axs.set_ylim(-20, 20)

axs.set(xlabel='Time (seconds)', ylabel='Total Angle Change (degrees)"')
axs.invert_yaxis()

positions = (500, 550, 600, 650, 700, 750)

labels = (14.42, 15.86, 17.30, 18.75, 20.19, 21.63)
plt.xticks (positions, labels)

fig.show()

class PlotCalf:

# PURPOSE: Plot the total angle change about the axis of the calf.

def  init__ (self, xCalfRoll = [], yCalfRoll = [], xCalfPitch = [],
yCalfPitch = [], xCalfYaw = [], yCalfyaw = [],

xCalfw = [], yCalfw = [], xCalfxX = [], yCalfX = [],
xCalfy = [], yCalfy = [], xCalfz = [], yCalfz = [],
changeCalf = []):

self.xCalfRoll = xCalfRoll

self.yCalfRoll = yCalfRoll

self.xCalfPitch = xCalfPitch

self.yCalfPitch = yCalfPitch

self.xCalfYaw = xCalfYaw

self.yCalfYaw = yCalfYaw

self.xCalfwW = xCalfWw
self.yCalfw = yCalfw
self.xCalfX = xCalfX
self.yCalfX = yCalfX
self.xCalfy = xCalfy
self.yCalfy = yCalfy
self.xCalfz = xCalfz
self.yCalfz = yCalfz

self.changeCalf = changeCalf

def suler_angle calf(self, xCalfRoll, yCalfRoll, xCalfPitch, yCalfPitch, xCalfYaw,
yCalfYaw) :
figCalf, axsCalf = plt.subplots(3, sharex = True, sharey = False)
figCalf.suptitle('Euler Axis Rotations for CALF')

with open('angles_calf roll2.csv', 'r') as csvfile:
plots = csv.reader (csvfile, delimiter=',6"')
for row in plots:
xCalfRoll.append(float(row[0]))
yCalfRoll.append(float(row[1l]))
setRoll2zZero = []
for t in range(0, len(xCalfRoll)):
setRoll2Zero.append(yCalfRoll[t]-yCalfRoll[500])
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295 axsCalf[0] .plot (xCalfRoll, setRoll2Zero, linewidth = 2, color='teal')

296 axsCalf[0].set(xlabel=""', ylabel='Roll')

297 axsCalf[0].set_x1im (500, 750)

298 astalf[O].set_ylim(ZO, -20)

299

300 with open('angles_calf pitch2.csv', 'r') as csvfile:
301 plots = csv.reader(csvfile, delimiter=',")

302 for row in plots:

303 xCalfPitch.append (float(row[0]))

304 yCalfPitch.append (float(row[1]))

305 setPitch2Zero = []

306 for t in range(0, len(xCalfPitch)):

307 setPitch2Zero.append(yCalfPitch[t]-yCalfPitch[500])
308 axsCalf[l].plot(xCalfPitch, setPitch2Zero, linewidth = 2, color='magenta')
309 axsCalf[l].set(xlabel="'"', ylabel='Pitch')

310 astalf[l].set_xlim(SOO, 750)

311 axsCalf[l].set_ylim(50, -50)

312

313 with open('angles_calf yaw2.csv', 'r') as csvfile:
314 plots = csv.reader(csvfile, delimiter=',"')

315 for row in plots:

316 xCalfYaw.append (float(row([0]))

317 yCalfYaw.append(float(row[1]))

318 setYaw2Zero = []

319 for t in range(0, len(xCalfYaw)):

320 setYaw2Zero.append(yCalfYaw[t]-yCalfYaw[500])
321 axsCalf[2].plot (xCalfYaw, setYaw2Zero, linewidth = 2, color='black')
322 axsCalf[2].set(xlabel=""', ylabel='Yaw')

323 axsCalf[2].set_x1im (500, 750)

324 axsCalf[2].set_ylim(20, -20)

325

326 §¢ optional!

327 $¢ figCalf.show()

328

329 def guaternion_calf(self, xCalfWw, yCalfW, xCalfX, yCalfX, xCalfy,
330 yCalfy, xCalfz, yCalfz):

331 figQuats, axsQuats = plt.subplots(4, sharex = True, sharey = False)
332 figQuats.suptitle('Quaternion Axis Rotations for CALF')
333

334 with open('angles calf W2.csv', 'r') as csvfile:
335 plots= csv.reader(csvfile, delimiter=',")

336 for row in plots:

337 xCalfW.append (float(row[0]))

338 yCalfw.append (float (xrow[1]))

339 axsQuats[0] .plot(xCalfw, yCalfW, color='blue')

340 axsQuats[0] .set(xlabel="", ylabel='W'")

341 axsQuats[0] .set_x1im (500, 750)

342

343 with open('angles calf X2.csv', 'r') as csvfile:
344 plots= csv.reader(csvfile, delimiter=',")

345 for row in plots:

346 xCalfX.append (float(xow([0]))

347 yCalfX.append(float (row[1]))

348 axsQuats[l] .plot(xCalfX, yCalfX, color='red')

349 axsQuats[l] .set(xlabel="", ylabel='X")

350 axsQuats[1l] .set_x1im (500, 750)

351

352 with open('angles calf Y2.csv', 'r') as csvfile:
353 plots= csv.reader(csvfile, delimiter=',")

354 for row in plots:

355 xCalfY.append (float(xow[0]))

356 yCalfY.append(float (row[1]))

357 axsQuats[2] .plot (xCalfY, yCalfY, color='green')

358 axsQuats[2] .set(xlabel=""', ylabel='Y")

359 axsQuats[2] .set_x1im (500, 750)

360

361 with open('angles_calf Z2.csv', 'r') as csvfile:
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362 plots= csv.reader(csvfile, delimiter=",")

363 for row in plots:
364 xCalfz.append (float(row([0]))
365 yCalfz.append(float(xrow([1l]))
366 axsQuats[3] .plot(xCalfz, yCalfz, color='orange')
367 axsQuats[3] .set(xlabel="Time (count)', ylabel='2")
368 astuats[3].set_;lim(SOO, 750)
369
370 $ optional!
371 $§ figQuats.show()
372
373 def dot_product_calf(self, xCalfw, yCalfW, xCalfX, yCalfX, xCalfy,
374 yCalfy, xCalfz, yCalfz, changeCalf):
375 oneRad2Degrees = 57.296
376 changeCalfFix = []
377 for tl in range (0, len(xCalfWw)):
378 changeCalf.append(np.arccos (np.minimum(l, yCalfWw[0]*yCalfwWw[tl] +
379 yCalfX[0]*yCalfX[tl] +
380 yCalfY[0]*yCalfY[tl] +
381
yCale[O]*yCale[tl]))*(lSO/np.pi)—(oneRadZDeg
rees/2))
382
383 for t2 in range (0, len(xCalfw)):
384 changeCalfFix.append (changeCalf[t2] -changeCalf[500])
385
386 fig, axs = plt.subplots()
387 axs.set_title('Quaternion-Based Net Angle Changes for CALF')
388 axs.plot (changeCalfFix, color='blue')
389 axs.set_x1im(500, 750)
390 axs.set_ylim(-20, 20)
391 axs.set(xlabel='Time (seconds)', ylabel='Total Angle Change (degrees)")
392 axs.invert_yaxis()
393 positions = (500, 550, 600, €50, 700, 750)
394 labels = (14.42, 15.86, 17.30, 18.75, 20.19, 21.63)
395 plt.xticks (positions, labels)
396 fig.show()
397
398 def euler combo_calf(self, xCalfRoll, yCalfRoll, yCalfPitch, yCalfYaw,
399 yCalfy, yCalfz):
400 theta_array = []
401 R = []
402
403 combinedEulerX = []
404 combinedEulerY = []
405 combinedEulerz = []
406
407 combinedNetAngle = []
408 undoCombinedCos = []
409 undoCombinedSin = []
410
411 combinedQuatW = []
412 combinedQuatX = []
413 combinedQuatY = []
414 combinedQuatz = []
415
416 rebuildCombined = []
417 rebuildCombinedFix = []
418
419 for t3 in range (0, len(xCalfRoll)):
420 theta = [yCalfRoll[t3] * (np.pi/180), yCalfPitch[t3]* (np.pi/180),
yCalfYaw[t3]* (np.pi/180)]
421 theta_array.append(theta)
422
423 R x = np.array([[1, ¢ A 0 | B
424 [o, math.cos(theta[0]), -math.sin(theta[0]) 1,
425 [0, math.sin(theta[0]), math.cos(theta[0]) ]

31



426 1)

427
428
429
430 R y = np.array([[math.cos(theta[l]), 0, math.sin(theta[l]) 3,
431 [0, 2 £ 0 1P
432 [-math.sin(theta[l]), 0, math.cos(theta[l]) ]
433 1)
434
435 R _z = np.array([[math.cos(theta[2]), -math.sin(theta[2]), 0],
436 [math.sin(theta[2]), math.cos(theta[2]), 0],
437 [9; 0, 1]
438 1)
439
440 R.append(np.dot(R_x, np.dot(R_y, R_z)))
441
442 combinedEulerX.append (math.atan2 (R[t3][2,1], R[t3][2,2]))
443 combinedEulerY.append (math.asin(R[t3][0,2]))
444 combinedEulerz.append (math.atan2 (R[t3][1,0], R[t3][0,0]))
445
446 combinedNetAngle.append (combinedEulerY[t3] * (180/np.pi))
447 undoCombinedCos .append (np.cos (combinedNetAngle[t3] * (np.pi/360)))
448 undoCombinedSin.append (np.sin (combinedNetAngle[t3] * (np.pi/360)))
449
450 combinedQuatW.append (undoCombinedCos [t3])
451 combinedQuatX.append (undoCombinedSin[t3] * np.sin(0.5*np.pi) * np.cos(np.pi))
452 combinedQuatY.append (0.01 * (yCalfY[t3] ] 2) *
np.cos (yCalfY[t3]/ (undoCombinedSin[t3])))
453 combinedQuatz.append(0.01 * (yCalfz[t3] / 2) *
np.cos(yCalfz[t3]/ (undoCombinedSin[t3])))
454
455 rebuildCombined.append (np.arccos (np.minimum (1,
456 combinedQuatW([0]*combinedQuatW[t3] +
457 combinedQuatX[0]*combinedQuatX[t3] +
458 combinedQuatY[0] *combinedQuatY[t3] +
459 combinedQuatz[0]*combinedQuatz[t3])) *(180/np.pi))
460
461 for t4 in range (0, len(xCalfRoll)):
462 rebuildCombinedFix.append (rebuildCombined[t4] -rebuildCombined[500])
463
464 fig, axs = plt.subplots()
465 axs.set_title('Euler-Based Net Angle Changes for CALF')
466 axs.plot (rebuildCombinedFix, color='violet')
467 axs.set_xlim(500, 750)
468 axs.set_ylim(-20, 20)
469 axs.set(xlabel='Time (seconds)', ylabel='Total Angle Change (degrees)"')
470 axs.invert_yaxis ()
471 positions = (500, 550, 600, 650, 700, 750)
472 labels = (14.42, 15.86, 17.30, 18.75, 20.19, 21.63)
473 plt.xticks (positions, labels)
474 fig.show()
475
476 class PlotFoot:
477 # PURPOSE: Plot the total angle change about the axis of the foot.
478
479 def _ init__ (self, xFootRoll = [], yFootRoll = [], xFootPitch = [],
480 yFootPitch = [], xFootYaw = [], yFootYaw = [],
481 xFootW = [], yFootW = [], xFootX = [], yFootX = [],
482 xFootY = [], yFootY = [], xFootz = [], yFootz = [],
483 changeFoot = []):
484 self.xFootRoll = xFootRoll
485 self.yFootRoll = yFootRoll
486 self.xFootPitch = xFootPitch
487 self.yFootPitch = yFootPitch
488 self.xFootYaw = xFootYaw
489 self.yFootYaw = yFootYaw
490
491 self.xFootW = xFootW
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492 self.yFootW = yFootW

493 self.xFootX = xFootX

494 self.yFootX = yFootX

495 self.xFootY = xFootY

496 self.yFootY = yFootY

497 self.xFootZ = xFoot2

498 self.yFootZz = yFoot2

499

500 self.changeFoot = changeFoot

501

502 def esuler_angle_ foot(self, xFootRoll, yFootRoll, xFootPitch, yFootPitch, xFootYaw,
yFootYaw) :

503 figFoot, axsFoot = plt.subplots(3, sharex = True, sharey = False)

504 figFoot.suptitle('Euler Axis Rotations for FOOT')

505

506 with open('angles_foot_roll2.csv', 'r') as csvfile:

507 plots = csv.reader (csvfile, delimiter=',")

508 for row in plots:

509 xFootRoll.append (float(row[0]))

510 yFootRoll.append(float(row[1l]))

511 setRoll2Zero = []

512 for t in range(0, len(xFootRoll)):

513 setRoll2Zero.append (yFootRoll[t]-yFootRoll[500])

514 axsFoot[0] .plot (xFootRoll, setRoll2Zero, linewidth = 2, color="teal')

515 axsFoot[0] .set(xlabel="'"', ylabel='Roll"')

516 axsFoot[0].set_x1im (500, 750)

517 axsFoot[O].set_ylim(ZO, -20)

518

519 with open('angles_foot_pitch2.csv', 'r') as csvfile:

520 plots = csv.reader(csvfile, delimiter=",")

521 for row in plots:

522 xFootPitch.append (float(row[0]))

523 yFootPitch.append (float(row([1]))

524 setPitch2Zero = []

525 for t in range(0, len(xFootPitch)):

526 setPitch2Zero.append(yFootPitch[t]-yFootPitch[500])

527 axsFoot[l].plot (xFootPitch, setPitch2Zero, linewidth = 2, color='magenta')

528 axsFoot[l].set(xlabel='"', ylabel='Pitch')

529 axsFoot[1l].set_x1im (500, 750)

530 axsFoot[l].set_ylim(SO, -50)

531

532 with open('angles_foot_yaw2.csv', 'r') as csvfile:

533 plots = csv.reader (csvfile, delimiter=',")

534 for row in plots:

535 xFootYaw.append (float (row([0]))

536 yFootYaw.append (float (row[1]))

537 setYaw2zZero = []

538 for t in range (0, len(xFootYaw)):

539 setYaw2Zero.append (yFootYaw[t]-yFootYaw[500])

540 axsFoot[2].plot (xFootYaw, setYaw2Zero, linewidth = 2, color='black')

541 axsFoot[2] .set(xlabel=""', ylabel='Yaw')

542 axsFoot[2].set_x1im (500, 750)

543 axsFoot[2] .set_ylim(20, -20)

544

545 § oOptional!

546 §¢ figFoot.show()

547

548 def guaternion_foot(self, xFootW, yFootW, xFootX, yFootX, xFootY,

549 yFootY, xFootZ, yFootZ):

550 figQuats, axsQuats = plt.subplots(4, sharex = True, sharey = False)

551 figQuats.suptitle('Quaternion Axis Rotations for FOOT')

552

553 with open('angles_foot W2.csv', 'r') as csvfile:

554 plots= csv.reader (csvfile, delimiter=",")

555 for row in plots:

556 xFootW. append (float (xrow[0]))

557 yFootW. append (float (row[1]))
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def

def

axsQuats[0] .plot (xFootW, yFootW, color='blue')
axsQuats[0] .set(xlabel=""', ylabel='W")
axsQuats[0] .set_x1im(500, 750)

with open('angles_foot_X2.csv', 'r') as csvfile:
plots= csv.reader(csvfile, delimiter=',")
for row in plots:
xFootX.append (float (xrow[0]))
yFootX.append (float (row[1]))
axsQuats[l] .plot (xFootX, yFootX, color='red')
axsQuats[l] .set(xlabel=""', ylabel='X")
axsQuats[l].set_x1im(500, 750)

with open('angles_foot_Y2.csv', 'r') as csvfile:
plots= csv.reader(csvfile, delimiter=",")
for row in plots:
xFootY.append (float (xrow[0]))
yFootY.append (float (xrow[l]))
axsQuats[2] .plot (xFootY, yFootY, color='green')
axsQuats[2] .set(xlabel="", ylabel='Y")
axsQuats[2].set_x1im(500, 750)

with open('angles foot_2z2.csv', 'r') as csvfile:
plots= csv.reader (csvfile, delimiter=",")
for row in plots:
xFootZz.append (float (xrow[0]))
yFootZ.append (float(row[1]))
axsQuats[3] .plot (xFootz, yFootZ, color='orange')
axsQuats[3] .set(xlabel="Time (count)',6 ylabel='z")
axsQuats[3].set_x1im(500, 750)

$ optional!
$ figQuats.show()

dot_product_foot (self, xFootW, yFootW, xFootX, yFootX, xFootY,
yFootY, xFootZ, yFootZ, changeFoot):

oneRad2Degrees = 57.296

changeFootFix = []

for tl in range (0, len(xFootW)):

changeFoot.append (np.arccos (np.minimum(l, yFootW[0]*yFootW[tl] +

yFootX[0]*yFootX[tl] +
yFootY[0]*yFootY[tl] +

yFootzZ [0]*yFootz[t1]))*(180/np.pi) - (oneRad2Deg
rees/2))

for t2 in range (0, len(xFootW)):
changeFootFix.append (changeFoot [t2] -changeFoot[500])

fig, axs = plt.subplots()

axs.set_title('Quaternion-Based Net Angle Changes for FOOT')
axs.plot (changeFootFix, color='blue')

axs.set_x1im (500, 750)

axs.set_ylim(-20, 20)

axs.set(xlabel="Time (seconds)', ylabel='Total Angle Change (degrees)"')
axs.invert_yaxis ()

positions = (500, 550, 600, €50, 700, 750)

labels = (14.42, 15.86, 17.30, 18.75, 20.19, 21.63)
plt.xticks (positions, labels)

fig.show()

euler combo_foot (self, xFootRoll, yFootRoll, yFootPitch, yFootYaw,
yFootY, yFootZ):

theta_array = []

R =[]

combinedEulerX = []
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623 combinedEulerY = []

624 combinedEulerz = []
625
626 combinedNetAngle = []
627 undoCombinedCos = []
628 undoCombinedSin = []
629
630 combinedQuatW = []
631 combinedQuatX = []
632 combinedQuatY = []
633 combinedQuatz = []
634
635 rebuildCombined = []
636 rebuildCombinedFix = []
637
638 for t3 in range (0, len(xFootRoll)):
639 theta = [yFootRoll[t3] * (np.pi/180), yFootPitch[t3]* (np.pi/180),
yFootYaw[t3]* (np.pi/180)]
640 theta_array.append(theta)
641
642 R x = np.array([[1, 0, 0 I P
643 [o, math.cos(theta[0]), -math.sin(theta([0]) 1],
644 [0, math.sin(theta[0]), math.cos(theta[0]) ]
645 1)
646
647
648
649 R_y = np.array([[math.cos(theta[l]), o, math.sin(theta[l]) 1,
650 [o, 1, 0 T
651 [-math.sin(theta[l]), 0y math.cos(theta[l]) ]
652 1)
653
654 R_z = np.array([[math.cos(theta[2]), -math.sin(theta[2]), 01,
655 [math.sin(theta[2]), math.cos (theta[2]), 01,
656 [o, 0, 1]
657 1
658
659 R.append(np.dot(R_x, np.dot(R_y, R _z)))
660
661 combinedEulerX.append (math.atan2 (R[t3][2,1], R[t3]1[2,2]))
662 combinedEulerY.append (math.asin(R[t3][0,2]))
663 combinedEulerZz.append(math.atan2 (R[t3][1,0], R[t3][0,0]))
664
665 combinedNetAngle.append (combinedEuler¥Y[t3] * (1280/np.pi))
666 undoCombinedCos.append (np.cos (combinedNetAngle[t3] * (np.pi/360)))
667 undoCombinedSin.append(np.sin(combinedNetAngle[t3] * (np.pi/360)))
668
669 combinedQuatW.append (undoCombinedCos [t3])
670 combinedQuatX.append (undoCombinedSin[t3] * np.sin(0.5*np.pi) * np.cos(np.pi))
671 combinedQuatY.append(0.01 * (yFootY[t3] / 2) *
np.cos (yFootY[t3]/ (undoCombinedSin[t3])))
672 combinedQuatZ.append (0.01 * (yFootz[t3] / 2) *
np.cos (yFootz[t3]/ (undoCombinedsSin[t3])))
673
674 rebuildCombined.append (np.arccos (np.minimum (1,
675 combinedQuatW[0]*combinedQuatW[t3] +
676 combinedQuatX[0]*combinedQuatX[t3] +
677 combinedQuatY[0]*combinedQuatY[t3] +
678 combinedQuatz [0]*combinedQuatz[t3])) *(180/np.pi))
679
680 for t4 in range (0, len(xFootRoll)):
681 rebuildCombinedFix.append (rebuildCombined[t4] -rebuildCombined[500])
682
683 fig, axs = plt.subplots()
684 axs.set_title('Euler—Based Net Angle Changes for FOOT')
685 axs.plot (rebuildCombinedFix, color='violet')
686 axs.set_x1im (500, 750)
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687 axs.set:ylim(—ZO, 20)

688 axs.set(xlabel='Time (seconds)', ylabel='Total Angle Change (degrees)'"')
689 axs.invert_yaxis()

690 positions = (500, 550, 600, 650, 700, 750)

691 labels = (14.42, 15.86, 17.30, 18.75, 20.19, 21.63)

692 plt.xticks (positions, labels)

693 fig.show()

694

695 class PlotLegRaising:

696 # PURPOSE: Plot the total angle change for when a person is sitting and
697 $ raising a leg by up to 90 degrees.

698

699 def  init__ (self, xLegW = [], yLegW = [], xLegX = [], yLegX = [],
700 xLegY = [], yLegY = [], xLegZz = [], yLegz = [],
701 changeleg = [], pointsMinMax = []):

702 self.xLegW = xLegW

703 self.yLegW = yLegW

704 self.xLegX = xLegX

705 self.yLegX = yLegX

706 self.xLegY = xLeg¥

707 self.yLegY = yLeg¥

708 self.xLegz = xLegz

709 self.yLegZz = yLegz

710

5 b | self.changeLeg = changeLeg

712 self.pointsMinMax = pointsMinMax

713

714 def leg_quat_analysis(self, xLegW, yLegW, xLegX, yLegX, xLegY,
715 yLegY, xLegZ, yLeg3l):

716 figleg, axsLeg = plt.subplots(4, sharex = True, sharey = False)
717 figLeg.suptitle('Sitting/Leg Raising Quaternions')

718

719 with open('test_quat_wholeleg w.csv', 'r') as csvfile:
720 plots= csv.reader (csvfile, delimiter=",")

721 for row in plots:

722 xLegW.append (float (xow([0]))

723 yLegW.append (float(xrow[1]))

724 axsLeg[0] .plot (xLegW,yLegW,linewidth=2, color='teal')
725 axsLeg[0] .set(xlabel=""', ylabel="Quat'n (W)")

726 axsLeg[0] .set_x1im (50, 100)

727

728 with open('test_quat_wholeleg x.csv', 'r') as csvfile:
729 plots= csv.reader(csvfile, delimiter="',"')

730 for row in plots:

731 xLegX.append (float(row[0]))

732 yLegX.append (float(xow[1l]))

733 axsLeg[l] .plot (xLegX,yLegX,linewidth=2, color='red')

734 axsLeg[l] .set(xlabel=""', ylabel="Quat'n (X)")

735 axsLeg[l] .set_x1im(50, 100)

736

737 with open('test_quat_wholeleg_y.csv', 'r') as csvfile:
738 plots= csv.reader (csvfile, delimiter=',"')

739 for row in plots:

740 xLegY.append (float(xow[0]))

741 yLegY.append(float(row[l]))

742 axsLeg[2] .plot (xLeg¥Y,yLegY,linewidth=2, color='green')
743 axsLeg[2] .set(xlabel=""', ylabel="Quat'n (Y)")

744 axsLeg[2] .set_x1im(50, 100)

745

746 with open('test_quat_wholeleg _z.csv', 'r') as csvfile:
747 plots= csv.reader (csvfile, delimiter=",")

748 for row in plots:

749 xLegZ.append (float(xrow([0]))

750 yLegZ.append (float(xow[1l]))

751 axsLeg[3] .plot (xLegZ,yLegZ,linewidth=2, color='orange')
752 axsLeg[3] .set(xlabel="Time (Count)', ylabel="Quat'n (2Z)")
753 axsLeg[3] .set_x1im (50, 100)
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754 # Display the matplotlab figure showing quaternion behaviors in the

755 $ raising leg (optional).

756 $¢ figLeg.show()

757

758 def leg_net_angles(self, xLegW, yLegW, xLegX, yLegX, xLegY,

759 yLegY, xLegz, yLegZ, changeleg, pointsMinMax):

760 $# Append changeLeg with the total angle change, which equates to

761 $¢ the inverse cosine of the dot product for each quaternion at the

762 $ initial and final time points, all multiplied by 360 degrees over
763 $# pi (for converting from radians to degrees).

764 for tl in range (0, len(xLegW)):

765 changeLeg.append(np.arccos (np.minimum(l, yLegW[0] * yLegW[tl] +
766 yLegX[0] * yLegX[tl] +

767 yLegY[0] * yLegY[tl] +

768 yLegz [0] * yLegZ[tl]))*(360/np.pi))

769

770 $ Plot the total angle change for the raising leg based on the

771 # quaternions using the changelLeg array. Limit the x-axis to

772 §¢ 50-100, and invert and limit the y-axis to 90-0.

773 figAnglelLeg, axsAnglelLeg = plt.subplots()

774 axsAngleLeg.set_title('Sitting/Leg-Raising')

775 axsAngleLeg.set_ylabel ("Total Angle Change (Degrees)")

776 axsAngleLeg.set_xlabel ('Time (Count)"')

777 axsAngleLeg.plot (changeLeg, color='blue')

778 axsAngleLeg.set_xlim(50, 100)

779 axsAngleLeg.set_ylim(90, 0)

780

781 $ Narrow down the time interval to 50-100, and append pointMinMax with
782 $ the y-values occuring within that interval.

783 for t2 in range (50, 101):

784 pointsMinMax.append (changeLeg[t2])

785

786 $ Determine the highest and lowest values of pointMinMax, and find their
787 $ locations within the x-axis.

788 xmax = pointsMinMax.index (max (pointsMinMax))+50

789 ymax = max (pointsMinMax)

790 xmin = pointsMinMax.index (min (pointsMinMax) )+50

791 ymin = min(pointsMinMax)

792

793 $ Annotate the highest point in the plot within the selected interval.
794 textl= "Max Angle: {:.3f}° \nTime: {:.3f}".format (ymax, xmax)

795 bbox_propsl = dict(boxstyle="square,pad=0.3", fc="w", ec="k", 1lw=0.72)
796 arrowpropsl=dict(arrowstyle="->", 1lw=1.5)

797 kwl = dict(xycoords='data',ktextcoords="axes fraction"”,

798 arrowprops=arrowpropsl, bbox=bbox propsl, ha="left", va="top")
799 axsAngleLeg.annotate(textl, xytext=(0.4, 0.0925), xy=(xmax, ymax), **kwl)
800

801 $ Annotate the lowest point in the plot within the selected interval.
802 text2= "Min Angle: {:.3f}° \nTime: {:.3f}".format(ymin, xmin)

803 bbox_props2 = dict(boxstyle="square,pad=0.3", fc="w", ec="k", 1lw=0.72)
804 arrowprops2=dict(arrowstyle="->", 1lw=1.5)

805 kw2 = dict(xycoords='data',textcoords="axes fraction",

806 arrowprops=arrowprops2, bbox=bbox_ props2, ha="left", va="bottom")
807 axsAngleLeg.annotate (text2, xytext=(0.18, 0.85), xy=(xmin, ymin), **kw2)
808

809 $ Display the matplotlab figure showing the total angle change in the
810 $ raising leg.

811 figAngleLeg.show()

812

813
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$ Import the libraries below
from DebugSubroutinesTeamUS import PlotThigh, PlotCalf, PlotFoot, PlotLegRaising

$ Turn on/off the following debug variables to control which human feature to

$# look at.

debugThigh = False § Change to True if you wish to visualize the thigh data.
debugCalf = False # Change to True if you wish to visualize the calf data.
debugFoot = False # Change to True if you wish to visualize the foot data.
debugleg = False # Change to True if you wish to visualize the raising leg data.

$# Initialize the following variables as empty arrays.

xRoll = []
yRoll = []
xPitch =

[]
yPitch = []

xYaw = []
yYaw = []

xQuatW = []
yQuatw = []

xQuatX = []
yQuatX = []

xQuatY = []
yQuatyY = []

xQuatz = []
yQuatz = []

netAngleChange = []
pointsMinMax = []

$ Call the subroutines by turning on only one debug value for any human feature.
if (debugThigh == True) and (debugCalf == False) and (debugFoot == False) and (debugleg
== False):
thigh = PlotThigh()
thigh.euler_angle_thigh(xRoll, yRoll, xPitch, yPitch, xYaw, yYaw)
thigh.quaternion_thigh(xQuatW, yQuatW, xQuatX, yQuatX, xQuatY, yQuat¥Y, xQuatz,
yQuatz)
thigh.dot_product_thigh(xQuatW, yQuatW, xQuatX, yQuatX, xQuatY, yQuatY¥, xQuatz,
yQuatz, netAngleChange)
thigh.euler_combo_thigh(xRoll, yRoll, yPitch, yYaw, yQuatY, yQuatz)

elif (debugThigh == False) and (debugCalf == True) and (debugFoot == False) and
(debugLeg == False):
calf = PlotCalf()
calf.euler_angle_calf(xRoll, yRoll, xPitch, yPitch, xYaw, yYaw)
calf.quaternion_calf(xQuatw, yQuatW, xQuatX, yQuatX, xQuat¥, yQuatY¥, xQuatZ, yQuatz)
calf.dot_product_calf (xQuatW, yQuatW, xQuatX, yQuatX, xQuat¥Y, yQuatY, xQuatz,
yQuatz, netAngleChange)
calf.euler combo_calf(xRoll, yRoll, yPitch, yYaw, yQuatY, yQuatz)

elif (debugThigh == False) and (debugCalf == False) and (debugFoot == True) and
(debugLeg == False):
foot = PlotFoot()
foot.euler_angle foot(xRoll, yRoll, xPitch, yPitch, xYaw, yYaw)
foot.quaternion_foot(xQuatw, yQuatW, xQuatX, yQuatX, xQuat¥, yQuat¥, xQuatz, yQuatz)
foot.dot_product_foot (xQuatW, yQuatW, xQuatX, yQuatX, xQuat¥, yQuatY¥, xQuatz,
yQuatz, netAngleChange)
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foot.euler_ combo_foot(xRoll, yRoll, yPitch, yYaw, yQuatY, yQuatz)

elif (debugThigh == False) and (debugCalf == False) and (debugFoot == False) and
(debuglLeg == True):
leg = PlotLegRaising()
leg.leg_quat_analysis(xQuatw, yQuatW, xQuatX, yQuatX, xQuat¥, yQuat¥Y, xQuatz, yQuatz)
leg.leg_net_angles(xQuatW, yQuatW, xQuatX, yQuatX, xQuat¥, yQuatY, xQuatz, yQuatz,
netAngleChange, pointsMinMax)

else:
print("Sorry, but you would rather want to look at the plots one human" +
" feature at a time and explain them before moving on. Please turn" +
off or turn on any of the debug variables provided to you, and" +
" have only one of them turned on to plot the desired data.")

"
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