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1 Introduction

A major health risk for the elderly is falling. Not only does falling cause injury, but

after the first fall elderly people experience a decline in health and an increased risk of

subsequent falls. There are ongoing research efforts to find reliable testing methods to

identify elderly people who are at risk for falling before they fall so that preventative

measures can be taken to preserve their health, such as prescribing exercises for specific

muscle groups. Dr. Burnet and her team at the William and Mary Department of

Health Sciences are researching possible tests at the Williamsburg Landing retirement

community. Dr. Burnet’s group uses various tests to gauge the strength and balance

abilities of elderly test subjects. They hope to find tests that can reliably predict fall risk

in seniors, which can then be used to identify at-risk patients for preventative treatment

(for example: an exercise plan). However, most of the tests they use are very qualitative

and labor intensive, involving subjective ratings and measurements taken and processed

by hand. Her team wants us to automate the different tasks as well as give her team the

ability to take more quantitative data.

We formulated two possible systems to aid in Dr. Burnet’s efforts: a chair-based

system for measurement of force exerted on a chair during sitting and an accelerometer-

based system for measurement of balance recovery. The chair-based system would pro-

vide information on both the balance abilities and the strength of subjects while the

accelerometer-based system would provide information on only the balance abilities of

subjects. After some development of both of these systems in parallel, the decision was

made to direct our focus to the chair-based force sensor system. In the second chapter

of this thesis, we discuss the initial literature research and design of both systems. We

also outline the progress made on the accelerometer system before its downselection. In

the third chapter of this thesis we discuss the development of the chair-based force sensor

system.
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2 Design and Planning

In this section the rationale behind each system is discussed as well as the initial plan

for the designs of the systems. The chair system was designed chiefly to measure control

during sitting using the initial peak force in the sitting event. The accelerometer system

was designed to provide quantitative data on a subject’s balance abilities by measuring

balance recovery as a time series. The progress made on the accelerometer system before

its downselection is also discussed in this section.

2.1 Chair-Based Force Sensor Measurements

In this section the initial design and literature research for the chair-based force sensor

system is discussed.

2.1.1 Rationale

A test used by Dr. Burnet’s team, the “get-up-and-go” test, involves the patient trying to

stand up and sit down as fast as possible for five repetitions. This test is timed, and the

student researcher rates the difficulty of the action for the test subject. While this test

is already somewhat quantitative (ie. it is timed) we hoped to provide more information

on the strength of the test subject by measuring the force exerted on the chair during

the test using force sensors. We hypothesize that subjects with less strength will have

less control during sitting and thus sit down harder on the chair, which we believe could

be measured by comparing the height of an initial impulse peak to their weight on the

chair. The data generated by the chair-based force sensor system could also be used

to automatically generate the timing data that the group already uses. Finally, there

is a possibility that the chair-based system could provide information on the balance of

elderly patients by measuring their weight distribution during sitting events. Thus, this

system would aid in Dr. Burnet’s efforts to quantify both balance and strength.
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2.1.2 Literature Research

There has been considerable research done on using chair-based sensing techniques to

get information on the chair occupant’s activities. For example, a group has developed

a method to determine posture and detect gestures by processing images generated by a

sensing mat placed on the chair.1 Another group used handmade, resistance-based load

cells placed under the legs of a chair to detect user activity.2 They were able to both

measure total weight and distribution of weight on the chair, and use fluctuations in these

measurements to detect activities such as typing. The simplicity and effectiveness of this

setup suggested it would be a good way to approach our measurement problem. To get

more information on force measurements, we researched how electronic bathroom scales

are constructed. The key component in an electronic bathroom scale is a strain gauge

load cell, which changes resistance when pressure is applied to it.3

More information was needed, however, on the variables that would be calculated

by the system. Previous kinesiology studies have been done using floor-based force sensors

to measure power exerted when standing up.4 Other studies have used body-based sensors

to measure variables such as trunk angle and acceleration, and used these measurements

to calculate quantities such as power exerted or time to sit.5,6 Other studies were done

based on a strategy of measuring many quantities and then later using statistics to

determine which quantities were useful.6 However, no kinesiology studies have been done

with chair-based force sensors. Thus, there are no established quantities for chair-based

sensors to calculate, and no established requirements for accuracy or time resolution of

measurements.

Our client has expressed interest in measuring “control during descent” but not

force distribution. Since it is fairly common in the literature for studies to be done mea-

suring novel variables and then determining the statistical significance of those variables

later, we decided to create a device that could measure directly the force exerted on the

chair over time. The data from this device will be used to determine several physically

relevant variables: the force a person exerts on the chair when they initially sit down

(do they drop onto the chair or sit down with control?), the time between sitting and

standing, and distribution of weight during sitting. We decided to include distribution
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measurement capability despite our client’s lack of interest in it in case the measurement

becomes of more interest later on. The device will be used in tandem with the “get-up-

and-go” test, where a subject is asked to stand up and sit down five times as fast as they

can. The time it takes the subject to complete this task is measured, and they are given

a rating on how easily they can perform the task. Quantitative data from our device with

strengthen this testing method since it is more objective than the current rating system

for measuring how “easily” a person completes the task.

2.1.3 Proposed System

Our proposed system would measure the force exerted on the chair during a get-up-and-

go test. We believe that each sit event will begin with an initial force peak corresponding

to the impulse of the person as they sit on the chair. This should be smaller for patients

who sit with control and larger for patients who fall into the chair. The force should then

reach a steady state representing the subject’s weight. Then force will go to zero (or the

weight of the chair) as the subject stands again. We propose to compare the impulse

peak to the steady state weight to give a measure of the subject’s control during sitting.

We are also interested in automatically replicating the time data that is currently being

measured by Burnet’s team.

2.2 Accelerometer Balance Recovery Measurements

In this section, the initial design and planning of the accelerometer system is discussed

as well as the initial progress made on the system before its downselection.

2.2.1 Rationale

One of the tests used by Dr. Burnet’s team, the “push test,” involves a push applied

by a member of Burnet’s team on the patient. The patient’s ability to regain balance

is measured on a qualitative scale from 1-5 where 3+ is considered a significant fall

risk. The rating system used here is a very qualitative process, which relies on the

subjective judgements of student researchers. We came up with the idea of a body-

mounted accelerometer to measure the process of balance recovery, which we could then
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quantify using a time series. We believe the time series data from the accelerometer would

allow quantification of balance abilities of elderly patients, thus aiding in Dr. Burnet’s

efforts to quantify balance.

2.2.2 Literature Research

Several systems have been developed to quantatively assess human postural balance. Of

these systems, force plates are the most commonly used.7 Force plates measure the

center of pressure (CoP) of a person standing on them. CoP is defined as the point

of application of the ground reaction force (force exerted by the ground on a body in

contact with it).8 Force plates usually consist of a board in which four force sensors

are distributed to measure the three force components, Fx, Fy and Fz and the three

components of the moment of force, Mx, My, and Mz, acting on the plate.9 The CoP

positions are calculated using these six measurements. When CoP is measured of a

patient regaining balance, many variables can be derived from the raw CoP data which

can provide information about the balance recovery mechanism. Some commonly used

variables are mean coordinates, ellipse area, path length, amplitude of displacement,

velocity and standard deviation.7,9

Body-worn accelerometers have been recently explored as a portable, low-cost

alternative to the force plates. In one study,10 an accelerometer was positioned at the

subjects’ pelvis to measure center of mass acceleration. The study was able to yield

measurements that have good test-retest reliability and are correlated well with the CoP

variables. There are also studies where the accelerometer was attached to different body

parts such as the chest or posterior trunk.11,12 However, the effect of the position the

sensor on the subject’s body on the measurements is unknown. Another factor that

might have an impact on the measuring results is the differences between individual

standing postures. An effective method to minimize this possible effect should be taken

into account when we develop our own balance system.

No commonly agreed cutoff value was found that differentiates the balance perfor-

mance of potential fallers from non-fallers for either CoP or accelerometer based variables,

since the values are largely dependent on the adopted test method and signal processing
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algorithm.13 However, it is possible to calculate our own cutoff value using a clinical

cutoff score formula14 for a chosen test method once we acquire a large pool of data.

Among the studies trying to compare CoP or accelerometer variables for elderly

(aged 60 or over) fallers versus non-fallers during quiet standing, a large amount of them

come to the conclusion that their chosen variables are significantly different between fallers

and non-fallers, based on a statistical analysis method called ANOVA.14–16 However,

ANOVA test allows researchers to claim two measurements to be significantly different

even if their mean values are less than one standard deviation apart. Therefore, it can

still be technically difficult to differentiate fallers versus non-fallers when we develop our

own balance devices.

While there have been many previous studies on the use of an accelerometer as

a motion tracker, there have not been any pertaining specifically to measurements of

balance recovery to predict fall risk in seniors. Several of the papers talk about using ac-

celerometers as well as gyroscopes for use in motion tracking. They use the accelerometer

to detect acceleration due to gravity. From there, they use arctans of the different axes

of acceleration in order to get the angle that the accelerometer is tilted at. In one of the

articles, accelerometers are used to track the motion of the entire body rather than just

the sway of the upper body as we are doing in our tests. Researchers were able to track

and model the movement of a body onto a virtual model with a good degree of accu-

racy. It was necessary to researchers to calibrate multiple sensors relative to each other;

however, this will not be necessary in our proposed system since it will only consist of a

single sensor. In another study, the issue of non-gravitational terms is assessed. When an

accelerometer is in motion, it is no longer only measuring the acceleration due to gravity,

which can lead to problems in determining tilt angles. In this study the non-gravitational

term was isolated mathematically to clean up the data.17

2.2.3 Proposed System

Our proposed accelerometer system would be attached to the trunk of a subject. During

a push test the accelerometer would measure wobbling of the subject during balance

recovery along multiple axes. This would generate a time series, which could be analyzed
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Required Specifications for the Accelerometer System

Required Measurement Rate 15 Hz

Required Accuracy 1◦

Other Ease of use, comfortable mount

Table 1: Estimated required specifications for the accelerometer system.

to determine the balance ability of the subject. We hypothesize that subjects who recover

their balance with fewer, smaller oscillations will have a better balance ability. Based on

the literature search, we believe this is a novel measurement which could possibly improve

upon previous data. The data produced by this system would need to be correlated will

fall risk by Dr. Burnet’s study.

2.2.4 Required Specifications

In order for the accelerometer system to be useful, it would need to attain a measurement

rate of 20 Hz. Experiments with the push test using group members suggest that patients

will regain balance within one second and sway up to three times. Estimating that about

five points per sway event are needed to accurately detect the event gives a necessary

measurement rate of 15 Hz.

We estimate that the accelerometer system would need to be accurate to within

one degree in order to provide useful measurements. The angles of sway when people

are pushed are small, estimated to be well within 20 degrees from the vertical. Thus,

the accelerometer system would need to have a high measurement accuracy to measure

swaying behavior. Finally, the accelerometer system must be both easy for the kinesiology

researchers to use and comfortable for the test subjects to wear. Kinesiology researchers

specifically requested that we avoid excess wires in our systems. Thus, the system must

either be able to log data via bluetooth or a usb and be able to run without being attached

to an external computer.
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2.2.5 Progress on Accelerometer System

The accelerometer selected was a SensorTag cc2650. The sensor is connected via blue-

tooth to a RaspberryPi 3. The accelerometer has to be able to effectively capture the

motion to a resolution that provides recognizable data. While the Sensortag specifica-

tions say that the period between measurements is 10ms (which translates to a frequency

of 100Hz), testing has shown the actual measurement rate to be 8 Hz. This is a major

hindrance to the system, since it is well below the required measurement rate of 15 Hz.

Multiple attempts to increase the measurement rate of the Sensortag failed.

The system measures the angle away from the horizontal. The measurements were

off by about 2◦ on average with a max deviation of 3.8◦. The deviations could be due to

the table that the measurements were being conducted. The experiment was conducted

by tilting the accelerometer next to a protractor and seeing if the measurement done by

the accelerometer was accurately portraying the angle.

Experimentally, we have seen that accuracy in angle measurements is reduced

when the accelerometer is in motion. This occurs because the current code assumes that

all acceleration is due to gravity; thus, if any other accelerations are present the angle

calculations are thrown off. In our literature search, a previous experiment was able to

account for the horizontal motion with a formula that eliminates the cross term that is

the horizontal motion.

2.2.6 Downselection Decision

We decided to focus on the force sensor system over the accelerometer system. While the

accelerometer system was promising and likely to be very useful to the kinesiology study,

its progress was impeded by issues with time resolution of measurements. The decision

to downselect to the force sensor system was based off of the fact that the force sensor

system became more clearly feasible before the accelerometer system did. Additionally,

we were motivated to downselect by the amount of work that the force sensor system

began to require once a proof-of-concept prototype was completed. The force sensor

system also seemed to be able to contribute more to the kinesiology study, since it is

theoretically capable of quantifying both balance and strength, while the accelerometer
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Required Specifications for the Force Sensor System

Required Measurement Rate 20 Hz

Required Accuracy 0.2 kg

Other Ease of use, reliability, and/or ease of calibration

Table 2: Estimated required specifications for the force sensor system.

system could only measure balance.

3 Development of a Chair-Based Force Sensor Sys-

tem

In this section we will discuss the development of a chair-based force sensor system.

We begin with an outline of requirements for a successful system. We then discuss the

development of the hardware used in the system, followed by a discussion of testing done

to validate the sensor data and theoretical calibration procedures to further validate the

system. We then discuss the software developed both to run on our system and to process

generated data. We conclude with a discussion of improvements that should be made in

future iterations of this product.

3.1 Required Specifications

The force sensor system must be able to take measurements at a sufficient rate to fully

characterize the force exerted on a chair during a sitting event. Estimating that it takes

about half a second for someone to sit down, and assuming we need about ten points per

event to characterize it fully, this leads to a necessary measurement rate of 20 Hz. We

believe the measurement rate of 80 Hz provided by our current hardware is more than

sufficient based on its tested ability to fully characterize various sitting behaviors.

The force sensor system also needs sufficient measurement accuracy to repeatably

and reliably measure force on the chair. Given that the average person in North America

weighs 80.7 kg,18 and estimating that weight will be distributed evenly among the four
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chair legs, this means that each force sensor needs to be able to give measurements

between zero and about 20 kg (neglecting the weight of the chair). Accuracy of 1%

would give measurements within 0.2 kg, which seems a reasonable and attainable goal for

our system. The force sensors also need to maintain accuracy, meaning that they provide

accurate results on multiple measurements separated by large time spans, such as days.

To ensure our system meets this criteria, testing should be done to determine whether

there is a “drift” in the measurements. If this is the case, we have developed a simple

calibration procedure that can be done before each measurement to account for the drift

(see the Future Directions section).

Finally, the force sensor system needs to be user-friendly. The system should be

easy to set up and adjust. Furthermore, the software to run the system should be simple

to run and provide automatic processing of data. Ideally, we want a system that only

requires a user to press “go” and then will take measurements and return processed values

with little or no additional input from the user.

3.2 Hardware Development

In this section development of the electronic components of the system is discussed,

including testing used to validate sensor data as well as theoretical procedures for cali-

bration of the final system. This is followed by a discussion of the development of mounts

for the sensors.

3.2.1 Electronics

A bathroom scale force sensor kit was purchased, containing four strain gauge load cells

and a HX711 breakout board. Each strain gauge load cell contains two resistors (see

Figure 1), one of which has a fixed resistance, and one of which has a resistance which

varies with force exerted on the sensor. Force can be measured by applying a voltage

across two of the leads and measuring the voltage from the middle lead (labelled “tap”

in Figure 1). However, the change in resistance of the variable resistor (and thus the

change in measured voltage at the tap) when force is applied to the sensor is very small.

Thus, it is impractical to directly measure the output voltage from a sensor to determine

10



Figure 1: A simple diagram of the strain gauge load cells used.

force applied to the sensor. Initially, this problem was resolved using a wheatstone bridge

formation (see Figure 2). This arranges the load cells such that two voltage dividers are

formed, each with two variable resistors and two fixed resistors. In one of the voltage

dividers, the voltage over the fixed resistors is measured, and in the other the voltage

over the variable resistors is measured. The ratio of these two measurements can be

used to determine the change in resistance over the variable resistors. In our system, we

compared the two outputs of the bridge using the HX711 breakout board which came

with the bathroom scale force sensor kit. This breakout board was able to compare two

pairs of input voltages, amplify these differences, and convert the differences to digital

signals which could be read by an arduino. This breakout board also served to amplify

the difference to a measurable amount. Initial measurements of this system were made

using an arduino, and we were able to produce live plots of the combined force exerted

on the sensors over time.

However, the wheatstone bridge system was not ideal. A wheatstone bridge pro-

duces a single combined measurement from all the sensors, thus preventing the measure-

ment of distribution of weight over the sensors. Furthermore, the system would give

anomalous results if the weight distribution was not even across the sensors, sometimes

reading negative weights.

To fix these issues, a system which could measure variation of force from each

sensor individually was developed. Each sensor was treated as an individual voltage
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Figure 2: The wheatstone bridge configuration of the strain gauge load cells.

divider, and the output from each tap was compared to a reference voltage produced

by a variable resistor. This reference voltage was tuned to be as close as possible to

the output voltage of the sensors when no force was applied in order to maximize the

measurement range. A separate HX711 breakout board was used for each sensor to

compare its output to the reference voltage, amplify the difference, and convert the signal

to a digital measurement. We successfully connected four sensors set up this way to a

raspberry pi, and were able to produce essentially simultaneous measurements of all four

sensors.

3.2.2 Testing and Calibration

We set up an op amp to subtract a reference voltage from the sensor voltage and to

amplify that voltage by a factor of 105. We were able to plot force on the sensor in

real-time using an arduino. Using this op-amp system, we verified the linearity of the

force sensor response by measuring the output voltage when pre-measured weights were

loaded onto a sensor. This showed us that the sensors responded linearly to forces up to

12 kg. We were not able to accurately measure forces above 12 kg due to instabilities in

our testing system.
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We also used the op-amp system to measure the time response of the force sensors.

We used an oscilloscope to measure the output voltage from the sensor when a metal

cylinder was bounced on it. The high resolution characterization of the bouncing (which

had behavior occurring on the order of microseconds) suggests that the force sensor

response can be regarded as happening essentially instantaneously. The only limit to

time resolution is in our processing of the force sensor response, for example, in the

conversion of the signal from analog to digital.

The current system we have is based on the assumptions that each of the four

sensors has the same scaling factor (the ratio of weight in kg loaded on sensor to sensor

output) and that the scaling factor keeps constant over time. The value of the scaling

factor currently does not affect the result of our data processing since the parameters we

currently choose to measure are not affected by the scale of the sensor output. However,

in the future, if we want our system output to reflect the real magnitude of the loaded

weight so that scale-related parameters can be measured (e.g. peak value, the ratio

between the weights on the front and rear legs of the chair), knowing the exact value

of the scaling factor for each sensor becomes crucial. Therefore, we propose a series of

calibration procedures for the future to obtain the value of the scaling factor for each

sensor:

Firstly, we want to check if the scaling factors for the sensors are constant over

time. This can be achieved by comparing the overall scaling factor (the ratio of total

weight in kg loaded on all four sensors to total output of all four sensors) over time. We

propose to measure the overall scaling factor by placing pre-measured weights on the

chair with four sensors attached below and linearly fitting the plot of the total loaded

weights versus the total sensor outputs. The overall scaling factor is equal to the slope

of the linear fit. We plan to measure the overall scaling factor on five different days and

compare the values to see if they are constant over time.

If the overall scaling factor varies over time, we plan to develop a calibration

program that automatically returns the overall scaling factor each time before the data

collecting process. If the overall scaling factor does not vary such a procedure would not

be necessary and the scaling factor can be hard-coded into the processing software.
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We then propose to check whether each sensor has the same value of scaling

factor. To achieve this, we plan to place a cylinder with uniform density on the chair.

Then we will move the object around the seat to find a location where the outputs of

all four sensors are equal to each other (after taring to account for different offsets due

to hardware calibration and uneven weight distribution of the chair). At this location,

mark the center of the bottom surface of the cylinder. If the center of the cylinder is

located at the center of the chair seat, it shows that each sensor has the same value of

scaling factor. We would repeat the procedures on five different days before making any

conclusion.

If each sensor does have the same scaling factor, this will be equal to the overall

scaling factor, and thus easy to measure. If each scaling factor is not the same, we plan

to measure each scaling factor by mounting a test stand vertically on individual sensors

and adding pre-measured weights to the stand to plot loaded weight versus individual

sensor output. If the overall scaling factor of the system keeps constant, we only need to

measure the scaling factor for each sensor once and use it to convert sensor output for

every data collecting process. However, if the overall scaling factor varies over time, we

have to measure each scaling factor before every data collecting process and may need to

consider switching to other types of force sensors.

3.2.3 Mounts

We also developed a mount for the force sensor which fit a chair leg. Each sensor had

to be elevated by its rim only with no support at its center in order for the sensor to

deform correctly to detect force. A mount was designed which supported the sensors at

the rim and provided support to hold a chair leg on the sensor. Four of the of these

mounts were manufactured using 3D printing, which allowed for initial measurements of

sitting behaviors in a chair.

We discovered that our setup was not always level, depending on its location. We

were concerned that rocking motion of a slightly unbalanced chair could interfere with

measurements, so we decided to design an adjustable mount. In order to level a chair

with four legs, in principle only one of the mounts needs to be adjustable. We planned to
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make four mounts that would be nearly identical, with one capable of being adjusted. We

decided to manufacture the mounts out of aluminum for durability and so that a screw

could be added easily.

Initially we designed a mount that would ultimately replace the initial 3D printed

non-adjustable mounts that currently held the sensors. However, the original mounts

required wiring to be threaded through a hole in the mount, so replacing the mounts

would require rewiring the sensors. Due to the complexity of the wiring we made the

decision to redesign the adjustable mounts to accommodate the original mounts.

However, this raised a new issue. Using the Tormach 770 (a CNC mill in the

William and Mary Makerspace) and an aluminum stock of dimensions 76mm x 154mm,

the mill bit would come too close to the mounts and would risk damage to the machine.

This was not an issue in the previous iteration since the standalone mount was small

enough to properly fit within the stock and the tool path did not come close to damaging

the machine. This issue was fixed by milling two separate pockets on one blank and

cutting the stock between them creating two separate mounts. We then drilled the holes

for the screws using a drill press and hand tapped them to fit an M3 screw on one of

the mounts. This design was both easy to manufacture and efficiently uses resources.

Unfortunately, due to COVID-19-related closures, we were not able to test the efficacy

of the adjustable mounts.

3.3 Software Development

In this section we first discuss software designed to run measurements on our system and

then discuss software developed to automatically process data generated by the system.

Code discussed in these sections can be found in the Appendix.

3.3.1 Control

Software was developed to allow a Raspberry Pi to communicate efficiently with the force

sensors via the HX711 breakout boards. Communication with the boards was done along

two lines, DOUT and CLK. The DOUT line is read by the Raspberry Pi. When the

DOUT line is high, the HX711 breakout board cannot be read. When the DOUT line
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Figure 3: A get-up-and-go measurement containing several outlier points, highlighted in orange. These

points were identified and removed using the data filter algorithm. The time vector used for this mea-

surement was artificially generated, and thus the time axis is labeled “fake.”

goes low, data can be transferred from the breakout board to the Pi. This is done by

applying 25 pulses along the CLK line. After each pulse on the CLK line, the breakout

board will shift a bit of the digitized data on the DOUT line, which can be read by the

Pi. After the last pulse, the DOUT line will go high until the next measurement is made,

thus preventing the same data point from being documented twice. The breakout board

digitizes approximately 80 measurements per second, and takes approximately 86 µs to

digitize a measurement.

Software was developed based on the HX711 library for Raspberry Pi developed by

underdoeg19 to take measurements from all sensors simultaneously. The code was altered

to work on an interrupt schedule, so that sensors would be triggered as data became

available. Measurements are stored in a measurement object, and are manipulated using

functions of the object. This simplifies the code the user needs to interact with to simple

commands, such as “r.get data()”. After measurements are taken, data is exported to a

.csv file with five columns, one for each sensor and one for time. (See Appendix for code.)
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3.3.2 Analysis

In this section we discuss code developed to automatically process data generated by the

system. The first section deals with code designed to remove noise from data. The second

section deals with code developed to quantify the initial impulse peak of a sit event. The

third section discusses code developed to calculate time parameters from get-up-and-go

data.

Outlier Removal The sensors, while usually reliable, occasionally generated noise

points (see Figure 3). These points needed to be removed from the data before auto-

matic processing of the data. An algorithm was developed to remove noise points from

the data (Listing 2 in the Appendix). The algorithm works by taking the differences

between subsequent points in each sensor dataset. These differences are then statistically

analyzed to generate a mean and a standard deviation. The code then looks through the

differences to identify differences which are greater than two standard deviations from

the mean. If a difference is found that meets these parameters, the code checks to see if

the surrounding points follow a specific pattern: a difference within two standard devia-

tions from the mean, a difference greater than two standard deviations from the mean,

followed later by a difference greater than two standard deviations from the mean in the

opposite direction, then a difference within two standard deviations from the mean. If

this pattern is found, the algorithm deletes all points within the range from all sensor

datasets and the time dataset. Since noise points typically occur in only one sensor at a

time, this does result in some loss of data; however, it simplifies processing of combined

sensor data. Furthermore, the impact of the data loss is small, since the noise points

are relatively infrequent, occurring no more than five times per second and often not ap-

pearing in measurements. This pattern successfully differentiates noise points from large

peaks in sit events, and is able to identify noise points even when multiple noise points

occur in sequence. Figure 3 demonstrates a successful run of this algorithm.

However, the data filter algorithm does not work in all cases. If there is an un-

usually large initial peak in the sit events, there will be a large standard deviation in

the differences between subsequent points. This can lead to noise points being ignored,
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Figure 4: A sit-stand measurement with an unusually large initial peak (generated by Dr. Cooke

purposely sitting down unusually hard in the chair). Noise points removed by the data filter are shown

in orange. The data filter algorithm is no longer able to remove all of the noise points. The time vector

used for this measurement was artificially generated, and thus the time axis is labeled “fake.”

because they may fall within two standard deviations from the mean differences when

the large differences found in unusually large peaks are included. This type of case can

be seen in Figure 4. This could be a major issue if these large peaks are typical of the

behavior of the elderly subjects of kinesiology studies. We hypothesize that subjects with

less control over sitting will have larger initial peaks. If the peaks caused by poor sitting

control are large enough to cause problems with outlier identification, the data filter will

need to be re-designed. However more data is needed to determine if this is the case.

Impulse Quantification Python code was developed to automatically process the

data, generating relevant parameters. An ideal sit-stand event is shown in Figure 5. As

the subject sits down, there is an initial peak, which then levels to a steady state force

which is approximately the weight of the subject. We were interested in measuring timing

of sit-stand events during a get-up-and-go-test (both overall timing and the length of each

event), the ratio of the initial peak force of a sit event to the steady state force of the

event, and average steady state force for each sensor.

Code was developed to measure the steady state force and the ratio of the initial

peak to the steady state force for individual sit events (see Listing 3 in the Appendix).
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Figure 5: An ideal sit-stand measurement. Initially there is a peak, which levels out to a steady state

force. The time vector used for this measurement was artificially generated, and thus the time axis is

labeled “fake.”

The algorithm identifies the initial peak by taking the maximum value of the dataset.

The steady state region is then identified by looking at differences between the averages

of subsequent groups of five points, starting from five points after the maximum. When

the difference between two groups is larger than 1
3

of the maximum value, the current

position is used as the end of the steady state region. The steady state average force is

obtained by taking the average of the points within the steady state region. The ratio is

then obtained by dividing the value of the initial peak by the average steady state value.

This algorithm works well for ideal sit events (see Figure 6). However, not all

datasets are ideal. The algorithm does not work well for datasets where the initial peak

is not the max of the dataset. Furthermore, some datasets do not have a well-defined

“steady-state” region, instead fluctuating wildly throughout the sit event. This makes the

“steady state average force” number somewhat useless, as there is no real “steady state”

in the data to average. These behaviors typically show up on single sensor datasets, not

datasets with combined data from all sensors. This may indicate that the combined data

is more suitable for ratio processing. It is possible that these fluctuations are caused by

problems with leveling of the chair, leading to rocking of the chair during the sit events

which causes variations in single sensor data but averages out in combined data. A full
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Figure 6: Processing of an ideal sit event. The steady state region is well-defined and the inital peak

is the maximum of the dataset, leading to easy processing. The time vector used for this measurement

was artificially generated, and thus the time axis is labeled “fake.”

dataset processed using this algorithm can be found in the Appendix.

Edge Detection While the developed code works well for single sit-stand events, we

were interested in developing code that would process get-up-and-go tests, which involve

five sit-stand events. Additionally, we needed code which would calculate the total time

of a get-up-and-go test as well as the time for each sit-stand event in the test. Code

was developed which would identify the beginning and end of each sit-stand event in a

get-up-and-go test. This information can be used to calculate timing parameters and

to segment the get-up-and-go test into single sit-stand events to be processed by the

algorithm discussed previously. The code works as an edge detector which marks the

starting point of any sharp rising edge (indicates the start of an event) and the end point

of any sharp falling edge (indicates the end of an event). The algorithm works well for

the current data we have (see Figure 7).

To achieve edge detecting, the algorithm firstly captures all the data points on

any rising or falling edge of the dataset. What the algorithm specifically does is that it

calculates the force differences between any two consecutive data points and compares

all the differences to a threshold value (0.1kg). Only when the differences of a point

itself and three points before and after it are all larger than the threshold value, the
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Figure 7: Edge detecting for a typical dataset involving multiple sit events. The algorithm successfully

identifies the starting point and end point of each sit event.

algorithm identifies the point as a rising point. Similarly, when the differences of a point

itself and its nearby points are all smaller than the negative threshold value (-0.1kg),

the algorithm identifies the point as a falling point. (see Figure 8) The algorithm then

defines a local minimum function which takes in an array of data points and identifies

any point in the array whose neighboring points (one point before and after) are both

larger than the point itself. The algorithm uses the local minimum function to identify

the minimum point of each rising and falling edge (see Figure 9). The algorithm then

runs the local minimum function again to remove any minimum points (red or yellow

points) that are relatively large within each sit segment. The algorithm will keep running

the local minimum function until the number of points remained matches the number of

sit events (which is known to be five in a get-up-and-go test). Finally, time duration is

calculated by taking the time difference between each remained point.

3.4 Future Directions

One of the most important improvements the current system needs is more rugged hard-

ware design. The wiring of the current system is both fragile and complicated. If con-

nections could be incorporated into a printed circuit board (pcb), components could be

directly attached to the board. This would simplify troubleshooting procedures and make
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Figure 8: All the rising points (marked in pink) and falling points (marked in green) identified by the

edge detecting algorithm for a typical dataset involving multiple sit events

Figure 9: The minimum point of every rising and falling edge (marked in red and yellow respectively)

for a typical dataset involving multiple sit events.
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the system more durable.

Furthermore, the user interface for the code should be improved. While effort

has been made to simplify the scripts necessary to run measurements through a class

structure, the system could be further simplified. Ideally, all measurements would be run

from a single, interactive script. This script would prompt the user to input necessary

values (how long to measure, what output files should be named, etc.), then run the

experiment and process and export values. Then the processing algorithms could be run

on the output data, generating variables of interest and exporting them to a csv file. This

type of system would require very little input or effort from the user.

Finally, while much progress was made on the processing scripts, further improve-

ments need to be made. The single sit-stand processing algorithm needs to be integrated

into the event-detecting algorithm so that it can be applied to get-up-and-go tests. Ad-

ditionally, the single sit-stand processing algorithm needs to be re-designed so that it can

more accurately identify relevant regions of sit-stand events. These algorithms should

also be exhaustively tested on many types of get-up-and-go tests done by many different

people, ensuring that they can handle all relevant measurement conditions.

Unfortunately, progress on this project was hindered by COVID-19-related clo-

sures. This prevented us from making improvements to our hardware. Furthermore, this

somewhat limited our ability to collect additional data. While we had some ability to

do tests by proxy through Dr. Cooke, the system was damaged in transport and virtual

troubleshooting was unable to resolve the issues. We decided to focus on data processing

and code improvements, since these were the easiest to implement remotely.
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5 Appendix

5.1 A Processed Dataset

Figure 10: Processed data from sensor 1 during the measurement. This data was not processed well

because the maximum was not the initial peak. Furthermore, there is no steady state behavior in this

measurement. The time vector used for this measurement was artificially generated, and thus the time

axis is labeled “fake.”

Figure 11: Processed data from sensor 2 during the measurement. This data closely resembles an ideal

measurement and was processed well. However, more of the initial peak was included in the steady state

behavior than should have been. The time vector used for this measurement was artificially generated,

and thus the time axis is labeled “fake.”
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Figure 12: Processed data from sensor 3 during the measurement. While this dataset has both a

well-defined peak and a well-defined steady state behavior, it was not processed well since the peak was

not the maximum of the dataset. The time vector used for this measurement was artificially generated,

and thus the time axis is labeled “fake.”

Figure 13: Processed data from sensor 4 during the measurement. The peak was correctly identified

here; however, this dataset has no steady state behavior. The time vector used for this measurement

was artificially generated, and thus the time axis is labeled “fake.”

i
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Figure 14: Processed data from the combined sensor data during the measurement. Notice that even

though some of the single-sensor data in this system had nonideal behavior, the total combined behavior

of the system is close to an ideal sit event. The time vector used for this measurement was artificially

generated, and thus the time axis is labeled “fake.”

i
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Sensor Ratio Steady Average (kg)

1 1.02 4.76

2 1.18 13.08

3 1.04 20.30

4 1.32 3.40

Combined 1.09 39.11

sum: 41.54

Table 3: Values generated from the processing of this dataset. The ratios vary over a rather large range

due to processing errors on several sensors. However, the steady state averages appear to qualitatively

give a good measure of the distribution over the sensors, and their sum has a rather close agreement to

the steady state combined average.

5.2 Software

Listing 1: The code developed to run measurements on the raspberry pi.

1 import sys

2 import RPi.GPIO as GPIO

3 from hx711 import HX711

4 import matplotlib.pyplot as plt

5 import time

6 #import numpy as np

7 class sensors:

8 def __init__(self ,sens1= [14,15], sens2 =[9,11], sens3 =[23,24], sens4 =[13 ,19]):

9

10 self.hx_1 = HX711(sens1[0], sens1 [1])

11 self.hx_2 = HX711(sens2[0], sens2 [1])

12 self.hx_3 = HX711(sens3[0], sens3 [1])

13 self.hx_4 = HX711(sens4[0], sens4 [1])

14

15 self.hx_1.set_reading_format("MSB", "MSB")

16 self.hx_2.set_reading_format("MSB", "MSB")

17 self.hx_3.set_reading_format("MSB", "MSB")

18 self.hx_4.set_reading_format("MSB", "MSB")

19

20 self.hx_1.reset()

21 self.hx_2.reset()

22 self.hx_3.reset()

23 self.hx_4.reset()

24
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25 self.sens1_offset = 0

26 self.sens1_slope = 1

27 self.sens2_offset = 0

28 self.sens2_slope = 1

29 self.sens3_offset = 0

30 self.sens3_slope = 1

31 self.sens4_offset = 0

32 self.sens4_slope = 1

33

34 self.sens_1_values = []

35 self.sens_2_values = []

36 self.sens_3_values = []

37 self.sens_4_values = []

38

39 self.load_storage = []

40

41 self.times = []

42 self.sens_1_measured = False

43 self.sens_2_measured = False

44 self.sens_3_measured = False

45 self.sens_4_measured = False

46

47 def measure_sens_1(self):

48 self.sens_1_values = self.sens_1_values + [self.hx_1.get_weight (1)]

49 self.sens_1_measured = True

50

51 def measure_sens_2(self):

52 self.sens_2_values = self.sens_2_values + [self.hx_2.get_weight (1)]

53 self.sens_2_measured = True

54

55 def measure_sens_3(self):

56 self.sens_3_values = self.sens_3_values + [self.hx_3.get_weight (1)]

57 self.sens_3_measured = True

58

59 def measure_sens_4(self):

60 self.sens_4_values = self.sens_4_values + [self.hx_4.get_weight (1)]

61 self.sens_4_measured = True

62

63 def measure(self):

64 GPIO.add_event_detect(sens_1 [0],GPIO.FALLING , callback = measure_sens_1 ())

65 GPIO.add_event_detect(sens_2 [0],GPIO.FALLING , callback = measure_sens_2 ())

66 GPIO.add_event_detect(sens_3 [0],GPIO.FALLING , callback = measure_sens_3 ())

67 GPIO.add_event_detect(sens_4 [0],GPIO.FALLING , callback = measure_sens_4 ())

68 while (not self.sens_1_measured) or (not self.sens_2_measured) or (not self.

sens_3_measured) or (not self.sens_4_measured):

69 pass
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70 GPIO.remove_event_detect(sens_1 [0])

71 GPIO.remove_event_detect(sens_2 [0])

72 GPIO.remove_event_detect(sens_3 [0])

73 GPIO.remove_event_detect(sens_4 [0])

74 self.sens_1_measured = False

75 self.sens_1_measured = False

76 self.sens_1_measured = False

77 self.sens_1_measured = False

78

79 def grab_time(self ,start_time):

80 t = time.time()

81 self.times = self.times + [t - start_time]

82

83 def measure_cali(self):

84 self.sens_1_values = self.sens_1_values + [self.hx_1.get_weight (5)]

85 self.sens_2_values = self.sens_2_values + [self.hx_2.get_weight (5)]

86 self.sens_3_values = self.sens_3_values + [self.hx_3.get_weight (5)]

87 self.sens_4_values = self.sens_4_values + [self.hx_4.get_weight (5)]

88

89

90 def calibrate(self ,sensor ,slope ,offset = 0):

91 if sensor == 1:

92 self.sens1_slope = slope

93 self.sens1_offset = offset

94 elif sensor == 2:

95 self.sens2_slope = slope

96 self.sens2_offset = offset

97 elif sensor == 3:

98 self.sens3_slope = slope

99 self.sens3_offset = offset

100 elif sensor == 4:

101 self.sens4_slope = slope

102 self.sens4_offset = offset

103 else:

104 raise Exception(’Problem with sensor input ’)

105

106 def convert_values(self):

107 for i in range(len(self.sens_1_values)):

108 self.sens_1_values[i] = self.sens_1_values[i]*self.sens1_slope - self.

sens1_offset

109 for i in range(len(self.sens_2_values)):

110 self.sens_2_values[i] = self.sens_2_values[i]*self.sens2_slope - self.

sens2_offset

111 for i in range(len(self.sens_3_values)):

112 self.sens_3_values[i] = self.sens_3_values[i]*self.sens3_slope - self.

sens3_offset
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113 for i in range(len(self.sens_4_values)):

114 self.sens_4_values[i] = self.sens_4_values[i]*self.sens4_slope - self.

sens4_offset

115

116 def tare(self):

117 self.sens1_offset = self.hx_1.get_weight (5)*self.sens1_slope

118 self.sens2_offset = self.hx_2.get_weight (5)*self.sens2_slope

119 self.sens3_offset = self.hx_3.get_weight (5)*self.sens3_slope

120 self.sens4_offset = self.hx_4.get_weight (5)*self.sens4_slope

121

122

123 def write_values(self ,filename):

124 with open(filename+".csv", "w") as f:

125 for i in range(0,len(self.sens_1_values)):

126 f.write(str(self.sens_1_values[i]) + ","+ str(self.sens_2_values[i]) + "

,"+str(self.sens_3_values[i]) + ","+str(self.sens_4_values[i]) + ","

+ str(self.times[i])"\n")

127

128 ## with open(filename+str (1) +". txt", "w") as f:

129 ## for i in self. sens_1_values :

130 ## f.write(str(i) + "\n")

131 ## with open(filename+str (2) +". txt", "w") as f:

132 ## for i in self. sens_2_values :

133 ## f.write(str(i) + "\n")

134 ## with open(filename+str (3) +". txt", "w") as f:

135 ## for i in self. sens_3_values :

136 ## f.write(str(i) + "\n")

137 ## with open(filename+str (4) +". txt", "w") as f:

138 ## for i in self. sens_4_values :

139 ## f.write(str(i) + "\n")

140

141

142 def calibration_program(self ,filename):

143 for i in range (1,7):

144 self.load_storage = self.load_storage + [float(input("Enter total weight 

number "+str(i)+":"))]

145 raw_input("Load weight and press enter when ready")

146 print("Measuring ...")

147 self.measure_cali () # averaging five measurements

148 print("Measurement complete!")

149

150 print("Calibration Measurements done. Scaling ...")

151 self.convert_values ()

152

153 with open(filename+".txt", "w") as f:
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154 f.write("total_loaded ,  measured_1 ,  measured_2 ,  measured_3 ,  measured_4 \n

")

155 for i in range(0,len(self.load_storage)):

156 f.write(str(self.load_storage[i]) + ", "+str(self.sens_1_values[i]) + ",

 "+str(self.sens_2_values[i]) + ", "+str(self.sens_3_values[i]) + ",

 "+str(self.sens_4_values[i]) + "\n")

157 self.load_storage = []

158

159

160

161 def get_values(self):

162 print("sensor1:",str(self.sens_1_values))

163 print("sensor2:",str(self.sens_2_values))

164 print("sensor3:",str(self.sens_3_values))

165 print("sensor4:",str(self.sens_4_values))

166 print("total:", str(self.sens_1_values [0]+ self.sens_2_values [0]+ self.

sens_3_values [0]+ self.sens_4_values [0]))

167 print("times:", str(self.times))

168

169 def clear_values(self):

170 self.sens_1_values = []

171 self.sens_2_values = []

172 self.sens_3_values = []

173 self.sens_4_values = []

174 self.times = []

175

176 def plot_values(self):

177 plt.figure (1)

178 plt.plot(self.times ,self.sens_1_values , label = "Sensor 1")

179 plt.xlabel("Time in terms of measurement rate")

180 plt.ylabel("Measured Force in kg")

181 plt.title("Distribution of Force")

182 plt.plot(self.times ,self.sens_2_values , label = "Sensor 2")

183 plt.plot(self.times ,self.sens_3_values , label = "Sensor 3")

184 plt.plot(self.times ,self.sens_4_values , label = "Sensor 4")

185 plt.legend ()

186 plt.show()

187 total = []

188 for i in range(len(self.sens_1_values)):

189 total = total + [self.sens_1_values[i] + self.sens_2_values[i] + self.

sens_3_values[i] + self.sens_4_values[i]]

190 plt.figure (2)

191 plt.plot(self.times ,total)

192 plt.xlabel("Time in terms of measurement rate")

193 plt.ylabel("Measured Force in kg")

194 plt.title("Combined measurements")
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195 plt.show()

196

197 def end_measurements(self):

198 GPIO.cleanup ()

199 print("Done!")

200 sys.exit()
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Listing 2: The code developed to removed outlier noise points from the data. This was designed to be

imported into the software used to calculate ratios

1 import csv

2 import statistics

3 import matplotlib.pyplot as plt

4

5 def data_filter(data ,time):

6

7 def get_differences(array_in):

8 array_out = []

9 for i in range(len(array_in) -1):

10 array_out = array_out + [array_in[i+1] - array_in[i]]

11 return array_out

12

13 def check(high ,low ,array ,i):

14 first_check = array[i] < low or array[i] > high

15 return first_check

16

17 # get differences between data points

18 differences = get_differences(data)

19

20 #find means of differences

21 mean = sum(differences)/len(differences)

22

23 #find standard deviations of differences

24 dev = statistics.pstdev(differences)

25

26 #generate comparison values

27 low = mean - 2*dev

28 high = mean + 2*dev

29

30 #put checks for first and last here

31 outliers_c = []

32 outliers_t = []

33 indexes = []

34 i = 0

35 while i < len(differences):

36 n = i

37 A = differences[i] < low

38 B = differences[i] > high

39 if A or B:

40 for x in range (1,4):

41 y = i + x

42

43 if A and differences[y] > high:
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44 C = differences[i-1] > low and differences[i-1] < high

45 D = differences[y+1] > low and differences[y+1] < high

46 if C and D:

47 n = y

48 if B and differences[y] < low:

49 C = differences[i-1] > low and differences[i-1] < high

50 D = differences[y+1] > low and differences[y+1] < high

51 if C and D:

52 n = y

53 if n != i:

54 outliers_c = outliers_c + data[(i+1):(n+1)]

55 outliers_t = outliers_t + time[(i+1):(n+1)]

56 for x in range(i,n):

57 indexes = indexes + [x]

58 del data[(i+1):(n+1)]

59 del time[(i+1):(n+1)]

60 del differences[i:n]

61 i = n+1

62 else:

63 i = i+1

64 return [data , time , outliers_c , outliers_t , indexes]
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Listing 3: The code developed to calculate ratios and distributions from a given dataset.

1 from data_filter import data_filter

2 import matplotlib.pyplot as plt

3 import statistics

4 import csv

5

6 def open_txt(filename_array):

7 [filename1 ,filename2 ,filename3 ,filename4] = filename_array

8 sensor_1 = []

9 sensor_2 = []

10 sensor_3 = []

11 sensor_4 = []

12 with open(filename1) as textfile:

13 for row in textfile:

14 sensor_1 = sensor_1 + [float(row.strip ())]

15 with open(filename2) as textfile:

16 for row in textfile:

17 sensor_2 = sensor_2 + [float(row.strip ())]

18 with open(filename3) as textfile:

19 for row in textfile:

20 sensor_3 = sensor_3 + [float(row.strip ())]

21 with open(filename4) as textfile:

22 for row in textfile:

23 sensor_4 = sensor_4 + [float(row.strip ())]

24 time = list(range(len(sensor_1)))

25

26 return [sensor_1 , sensor_2 , sensor_3 ,sensor_4 , time]

27

28 def open_csv(filename):

29 sensor_1 = []

30 sensor_2 = []

31 sensor_3 = []

32 sensor_4 = []

33 time = []

34 with open(filename) as csvfile:

35 reader = csv.reader(csvfile)

36 for row in reader:

37 sensor_1 = sensor_1 + [float(row [0])]

38 sensor_2 = sensor_2 + [float(row [1])]

39 sensor_3 = sensor_3 + [float(row [2])]

40 sensor_4 = sensor_4 + [float(row [3])]

41 #time = time + [float(row [4])]

42 time = list(range(len(sensor_1)))

43 return [sensor_1 , sensor_2 , sensor_3 ,sensor_4 , time]

44

45 def outlier_plot(time ,data ,outliers_t ,outliers_c):
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46 plt.figure (1)

47 plt.scatter(time ,data , label = "Cleaned Data")

48 plt.scatter(outliers_t ,outliers_t ,label = "Removed Points")

49 plt.xlabel("Time (fake)")

50 plt.ylabel("Measured Force in kg")

51 plt.title("Cleaned Data")

52 plt.legend ()

53 plt.show()

54

55 def filter_data(sensor_1 ,sensor_2 ,sensor_3 ,sensor_4 ,time):

56 [sensor_1 , time , outliers_c , outliers_t , indexes] = data_filter(sensor_1 ,time)

57

58 for i in indexes:

59 del sensor_2[i]

60 del sensor_3[i]

61 del sensor_4[i]

62 outlier_plot(time ,sensor_1 ,outliers_t ,outliers_c)

63

64 return [sensor_1 ,sensor_2 ,sensor_3 ,sensor_4 ,time]

65

66 def clean_data(sensor_1 ,sensor_2 ,sensor_3 ,sensor_4 ,time):

67 [sensor_1 , time , outliers_c , outliers_t , indexes] = data_filter(sensor_1 ,time)

68

69 for i in indexes:

70 del sensor_2[i]

71 del sensor_3[i]

72 del sensor_4[i]

73 outlier_plot(time ,sensor_1 ,outliers_t ,outliers_c)

74

75 [sensor_2 , time , outliers_c , outliers_t , indexes] = data_filter(sensor_2 ,time)

76 for i in indexes:

77 del sensor_1[i]

78 del sensor_3[i]

79 del sensor_4[i]

80

81 outlier_plot(time ,sensor_2 ,outliers_t ,outliers_c)

82

83 [sensor_3 , time , outliers_c , outliers_t , indexes] = data_filter(sensor_3 ,time)

84 for i in indexes:

85 del sensor_1[i]

86 del sensor_2[i]

87 del sensor_4[i]

88

89 outlier_plot(time ,sensor_3 ,outliers_t ,outliers_c)

90

91 [sensor_4 , time , outliers_c , outliers_t , indexes] = data_filter(sensor_4 ,time)

38



92 for i in indexes:

93 del sensor_1[i]

94 del sensor_2[i]

95 del sensor_3[i]

96

97 outlier_plot(time ,sensor_4 ,outliers_t ,outliers_c)

98

99 combined = []

100 for i in range(len(sensor_1)):

101 combined = combined + [sensor_1[i] + sensor_2[i] + sensor_3[i] + sensor_4[i]]

102

103 return [sensor_1 , sensor_2 , sensor_3 , sensor_4 , combined , time]

104

105 def process(data ,time):

106 peak = max(data)

107 index = data.index(peak)

108 diff = peak/3

109

110

111 number = 5

112 i = index + number

113 n = 0

114

115 while i < len(data) and n == 0:

116 avg1 = sum(data[i:i+6])/5

117 avg2 = sum(data[i+6:i+11])/5

118 if avg1 -avg2 > diff:

119 n = i

120 i = i+1

121 if n != 0:

122 i = index + number

123 steady = sum(data[i:n])/len(data[i:n])

124 ratio = peak/steady

125 else:

126 i = 0

127 index = 0

128 ratio = 0

129 steady = 0

130 return [data , steady , ratio , i, n, index]

131

132 def calculate_ratios(filename ,txt):

133 #read in files

134 if txt == 1:

135 [sensor_1 , sensor_2 , sensor_3 ,sensor_4 , time] = open_txt(filename)

136 else:

137 [sensor_1 , sensor_2 , sensor_3 ,sensor_4 , time] = open_csv(filename)
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138

139 #remove noise points

140 [sensor_1 , sensor_2 , sensor_3 ,sensor_4 , combined , time] = clean_data(sensor_1 ,

sensor_2 , sensor_3 ,sensor_4 , time)

141

142 sensor_1_out = process(sensor_1 ,time)

143 print("one done")

144 sensor_2_out = process(sensor_2 ,time)

145 print("two done")

146 sensor_3_out = process(sensor_3 ,time)

147 print("three done")

148 sensor_4_out = process(sensor_4 ,time)

149 print("four done")

150 combined_out = process(combined ,time)

151 print("five done")

152

153 return [sensor_1_out , sensor_2_out , sensor_3_out , sensor_4_out , combined_out ,time]

154 def ratio_plot(time ,data ,i,n,index):

155 plt.figure (1)

156 plt.scatter(time ,data , label = "Cleaned Data")

157 plt.scatter(time[i:n],data[i:n],label = "steady state")

158 plt.scatter(time[index],data[index],label = "max")

159 plt.xlabel("Time (fake)")

160 plt.ylabel("Measured Force in kg")

161 plt.title("Cleaned Data")

162 plt.legend ()

163 plt.show()

164

165 if __name__ == "__main__":

166 files = [’18Feb1.txt’,’18Feb2.txt’,’18Feb3.txt’,’18Feb4.txt’]

167 [sensor_1_out , sensor_2_out , sensor_3_out , sensor_4_out , combined_out ,time] =

calculate_ratios(files ,1)

168 [sensor_1 , steady1 , ratio1 , i1, n1, index1] = sensor_1_out

169 [sensor_2 , steady2 , ratio2 , i2, n2, index2] = sensor_2_out

170 [sensor_3 , steady3 , ratio3 , i3, n3, index3] = sensor_3_out

171 [sensor_4 , steady4 , ratio4 , i4, n4, index4] = sensor_4_out

172 [combined , steady5 , ratio5 , i5, n5, index5] = combined_out

173

174 ratio_plot(time ,sensor_1 ,i1,n1,index1)

175 ratio_plot(time ,sensor_2 ,i2,n2,index2)

176 ratio_plot(time ,sensor_3 ,i3,n3,index3)

177 ratio_plot(time ,sensor_4 ,i4,n4,index4)

178 ratio_plot(time ,combined ,i5,n5,index5)

179

180 print("sensor_1 ratio:", ratio1 , "sensor_1 steady average:", steady1)

181 print("sensor_2 ratio:", ratio2 , "sensor_2 steady average:", steady2)
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182 print("sensor_3 ratio:", ratio3 , "sensor_3 steady average:", steady3)

183 print("sensor_4 ratio:", ratio4 , "sensor_4 steady average:", steady4)

184 print("combined ratio:", ratio5 , "combined steady average:", steady5)
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Listing 4: The code developed to calculate time duration within and between each sit event from a

given dataset involving multiple sit events.

1 import matplotlib.pyplot as plt

2 import numpy as np

3 import csv

4 from data_filter import data_filter

5

6 open_filename = input(’Enter the name of the file you want to import: ’)

7 event_num = float(input(’Enter the number of sit events this dataset has: ’))

8 print(’’)

9

10 def open_csv(filename):

11 sensor_1 = []

12 sensor_2 = []

13 sensor_3 = []

14 sensor_4 = []

15 time = []

16 with open(filename) as csvfile:

17 reader = csv.reader(csvfile)

18 for row in reader:

19 sensor_1 = sensor_1 + [float(row [0])]

20 sensor_2 = sensor_2 + [float(row [1])]

21 sensor_3 = sensor_3 + [float(row [2])]

22 sensor_4 = sensor_4 + [float(row [3])]

23 time = list(range(len(sensor_1)))

24 return [sensor_1 , sensor_2 , sensor_3 ,sensor_4 , time]

25

26 def clean_data(sensor_1 ,sensor_2 ,sensor_3 ,sensor_4 ,time):

27 [sensor_1 , time , outliers_c , outliers_t , indexes] = data_filter(sensor_1 ,time)

28 for i in indexes:

29 del sensor_2[i]

30 del sensor_3[i]

31 del sensor_4[i]

32 [sensor_2 , time , outliers_c , outliers_t , indexes] = data_filter(sensor_2 ,time)

33 for i in indexes:

34 del sensor_1[i]

35 del sensor_3[i]

36 del sensor_4[i]

37 [sensor_3 , time , outliers_c , outliers_t , indexes] = data_filter(sensor_3 ,time)

38 for i in indexes:

39 del sensor_1[i]

40 del sensor_2[i]

41 del sensor_4[i]

42 [sensor_4 , time , outliers_c , outliers_t , indexes] = data_filter(sensor_4 ,time)

43 for i in indexes:

42



44 del sensor_1[i]

45 del sensor_2[i]

46 del sensor_3[i]

47 combined = []

48 for i in range(len(sensor_1)):

49 combined = combined + [sensor_1[i] + sensor_2[i] + sensor_3[i] + sensor_4[i]]

50

51 return [sensor_1 , sensor_2 , sensor_3 , sensor_4 , combined , time]

52

53 def plot_data(x,y,label_name):

54 plt.plot(x,y,’bo’,label = label_name)

55 plt.xlabel("Time in terms of measurement rate")

56 plt.ylabel("Measured Force in kg")

57 plt.title("Distribution of Force")

58

59 #create a list of differences between consecutive points

60 def get_differences(array_in):

61 array_out = []

62 for i in range(len(array_in) -1):

63 array_out = array_out + [array_in[i+1] - array_in[i]]

64 return array_out

65

66 def local_min(array_x , array_y):

67 local_min_index = []

68 local_min_y = []

69 local_min_x = []

70 for i in range(1,len(array_y) -1):

71 if array_y[i] < array_y[i-1] and array_y[i] < array_y[i+1]:

72 local_min_index += [i]

73 local_min_y += [array_y[i]]

74 local_min_x += [array_x[i]]

75 return local_min_x , local_min_y

76

77

78 def get_time_duration(data ,time ,sensor_num):

79 plt.figure(sensor_num)

80 plot_data(time ,data ,’filtered sensor ’+str(sensor_num))

81 data_diff = get_differences(data)

82

83 #detect rising and falling edges

84 diff_thres = 0.1 #set the threshold value

85 points = 3 #set the number of nearby points

86

87 rising_time = []

88 rising_force = []

89 falling_time = []
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90 falling_force = []

91 i = points

92 while i < len(data_diff)-points:

93 data_diff_subset = [data_diff[i-p] for p in range(points ,0,-1)] + [data_diff[i]]

+ [data_diff[i+p] for p in range(1,points +1)]

94 if all(item > diff_thres for item in data_diff_subset):

95 rising_time += [time[i]]

96 rising_force += [data[i]]

97 if all(item < -diff_thres for item in data_diff_subset):

98 falling_time += [time[i]]

99 falling_force += [data[i]]

100 i = i+1

101

102 #find local min of risng and falling edges

103 try:

104 rising_time_lm , rising_force_lm = local_min(rising_time ,rising_force)

105 while len(rising_time_lm) > event_num -1:

106 rising_time_lm , rising_force_lm = local_min(rising_time_lm ,rising_force_lm)

107 rising_time_lm = [rising_time [0]] + rising_time_lm

108 rising_force_lm = [rising_force [0]] + rising_force_lm

109 plt.plot(rising_time_lm ,rising_force_lm ,’o’,color = ’red’, label = ’rising edge 

detected ’)

110

111 falling_time_lm , falling_force_lm = local_min(falling_time ,falling_force)

112 while len(falling_time_lm) > event_num -1:

113 falling_time_lm , falling_force_lm = local_min(falling_time_lm ,

falling_force_lm)

114 falling_time_lm = falling_time_lm +[ falling_time [-1]]

115 falling_force_lm = falling_force_lm +[ falling_force [-1]]

116 plt.plot(falling_time_lm ,falling_force_lm ,’o’,color = ’yellow ’, label = ’falling

 edge detected ’)

117 plt.legend ()

118

119 total_time = falling_time_lm [-1] - rising_time_lm [0]

120 time_within = [falling_time_lm[i] - rising_time_lm[i] for i in range(0,len(

falling_time_lm))]

121 time_between = [rising_time_lm[i+1] - falling_time_lm[i] for i in range(0,len(

falling_time_lm) -1)]

122 print(’total time duration for sensor ’+ str(sensor_num) + ’: ’ + str(total_time)

)

123 print(’time duration for each sit event for sensor ’+ str(sensor_num) + ’: ’,

time_within)

124 print(’time between each sit event for sensor ’+ str(sensor_num) + ’: ’,

time_between)

125 print(’list of every rising time for sensor ’+ str(sensor_num) + ’: ’,

rising_time_lm)
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126 print(’list of every falling time for sensor ’+ str(sensor_num) + ’: ’,

falling_time_lm)

127 print(’’)

128 except:

129 print(’sensor ’+ str(sensor_num)+’ error’)

130 print(’’)

131

132

133 if __name__ == "__main__":

134 [sensor_1 , sensor_2 , sensor_3 , sensor_4 , time] = open_csv(open_filename)

135 [sensor_1_fil , sensor_2_fil , sensor_3_fil , sensor_4_fil , combined_fil , time] =

clean_data(sensor_1 ,sensor_2 ,sensor_3 ,sensor_4 ,time)

136

137 get_time_duration(sensor_1_fil , time ,1)

138 get_time_duration(sensor_2_fil , time ,2)

139 get_time_duration(sensor_3_fil , time ,3)

140 get_time_duration(sensor_4_fil , time ,4)

141

142 plt.show()
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