

Contents

Acknowledgments iii

List of Figures iv

List of Tables v

Abstract v

1 Introduction 1

2 Background 2

2.1 Correlation Matrices . 2

2.2 The Generalized Eigenvalue Problem 3

2.2.1 Derivation . 3

2.2.2 Properties . 4

2.2.3 Spectral Decomposition of Correlation Functions 5

2.2.4 Solving The Generalized Eigenvalue Problem 7

3 Finding the Generalized Eigenvalues 9

3.1 Statistical Methods . 9

3.1.1 Jackknife Resampling . 9

3.1.2 Data . 10

i

3.2 Solving the Generalized Eigenvalue Problem for a Statistical Ensemble 11

3.2.1 Matching Eigenvalues Across Configurations 11

3.2.2 Calculating C(t0) . 13

3.2.3 Solving the Generalized Eigenvalue Problem 14

4 Fitting the Eigenvalues 16

4.1 Fit Fuction . 16

4.2 Determining Goodness of Fit . 16

4.2.1 Chi-squared Test . 17

4.2.2 Chi-squared Probability Function 17

4.3 Fitting Procedure . 18

4.3.1 Minuit . 18

4.3.2 Trial Fits . 18

4.3.3 Choosing t0 . 19

5 Results 20

6 Conclusion and Further Work 20

A Code 26

A.1 Eigenvector Reordering . 26

A.2 Solving the Generalized Eigenvalue Problem 29

A.3 Fitting the Eigenvalues . 35

A.4 Utility Functions . 41

ii

Acknowledgments

I would like to thank my advisor, Professor Jozef Dudek, for patiently and

effectively explaining all of this material to me. I would also like to thank the rest of

my examining committee, Professors Irina Novikova and Andreas Stathopoulos, for

providing their time and feedback.

iii

List of Figures

3.1 Jackknife Resampling of C5,5(t) . 11

3.2 λ2 scatterplot at t0 = 8, 12 . 15

4.1 Goodness of fit vs. t0 . 23

4.2 En vs. t0 . 24

5.1 λn(t) fits . 25

iv

List of Tables

4.1 Minuit arguments. 19

5.1 Fit Parameter Values . 21

5.2 Discrete Energies . 21

v

Abstract

We extracted a discrete energy spectrum corresponding to scattering of two

pions in a finite volume in Quantum Chromodynamics by analyzing matrices of two-

point correlation functions computed within lattice QCD. We solved the generalized

eigenvalue problem C(t)v = λC(t0)v, where the eigenvectors correspond to the opti-

mal linear combination of basis operators to interpolate each state in the spectrum

and the time dependence of the eigenvalues is controlled by the state energy. In order

to solve the generalized eigenvalue problem, we used the properties of positive definite

matrices to decompose C(t0) into its eigensystem and rewrite the GEVP as an ordi-

nary eigenvalue problem with a Hermitian matrix. In order to fit the time dependence

of the eigenvalues, it was necessary to identify corresponding eigenvalues across times

and across configurations. This was accomplished by comparing the inner products

of the corresponding eigenvectors.

The energies were extracted from the eigenvalues by applying nonlinear fitting of

the form λ(t) = (1− A)e−E(t−t0) + Ae−E
′(t−t0) to the to the time-dependent general-

ized eigenvalues of the correlation matrix, where the second exponential with the E ′

parameter accounts for excited states not captured by the limited basis of operators

used.

Chapter 1

Introduction

Quantum Chromodynamics is a quantum field theory describing the interactions of

quarks and gluons, the fundamental particles which are confined within strongly inter-

acting composite particles called hadrons. In lattice QCD, quark and gluon fields are

discretized on a space-time grid of finite volume with finite spacing. The path integral

in quantum field theory is over all possible field configurations ϕ with weights e−iS[ϕ],

where the action S is the integral of the Lagrangian of QCD. After transforming to

Euclidean time, it → t, e−iS[ϕ] becomes real and can be interpreted as a probability.

The expectation value of an observable can be computed in lattice QCD by averaging

over an ensemble of possible field configurations drawn randomly according to this

probability using importance sampled Monte Carlo [1].

The discrete spectrum of interacting hadrons can be extracted from the two-point

correlation functions of a basis of interpolating operators constructed from quark and

gluon fields with the quantum numbers of the hadrons. A formalism was developed

by Lüscher to determine the infinite-volume scattering amplitudes from the discrete

spectrum of QCD in a finite cube. This formalism relates the discrete spectrum to

discrete scattering phase shifts [1].

Unstable hadrons are observed experimentally as resonances, peaks in the scatter-

ing cross-sections of stable hadrons [1]. Here, we analyze correlation functions from

1

[2] corresponding to the ρ resonance in ππ scattering.

Chapter 2

Background

2.1 Correlation Matrices

A two-point correlation function Cij(t) = 〈0|Oi(t)Oj(0)|0〉 gives the vacuum expec-

tation value of the product of the operators Oi(t)Oj(0) where Oi(t) evolves in time

while Oj(0) is fixed at its value at t = 0. The time evolution of the operator O(t)

in the Heisenberg picture is given by O(t) = eiĤtO(0)e−iĤt [3]. After transforming

to Euclidean time, it → t, O(t) becomes O(t) = eĤtO(0)e−Ĥt. By inserting a com-

plete set of eigenstates |n〉 such that
∑

n |n〉〈n| = 1 and Ĥ|n〉 = En|n〉, a correlation

function can be decomposed as

Cij(t) =
∑
n

〈0|Oi(t)|n〉〈n|Oj(0)|0〉 =
∑
n

〈0|eĤtOi(0)e−Ĥt|n〉〈n|Oj(0)|0〉

=
∑
n

〈0|Oi(0)|n〉〈n|Oj(0)|0〉e−Ent (2.1)

where the overlap 〈n|Oj(0)|0〉 indicates how well the operator Oj interpolates the

eigenstate |n〉 from the vacuum. The term eE0t is a constant scale factor and is

eliminated by setting E0 = 0.

A correlation function is a sum of exponentials, but a multi-exponential fit is likely

to fail because the curves of closely spaced energies cannot be distinguished. Instead,

we will apply a variational method to extract the energies individually.

2

The path integral in quantum field theory is over all possible field configurations,

so calculated values of Cij(t) are statistical ensembles
{
Ck
ij(t)

}N
k=1

corresponding to a

sampling of possible field configurations where the mean over the ensemble provides

the estimate of the observable and the variance on the mean gives a measure of the

precision of the estimate.

2.2 The Generalized Eigenvalue Problem

Given a matrix of correlation functions, we would like to extract the energies of the

eigenstates. Using a variational approach to find the linear combinations of operators

which best approximate the eigenstates leads to a generalized eigenvalue problem.

2.2.1 Derivation

Consider a diagonal correlator 〈0|Ω(t)Ω†(0)|0〉, where Ω =
∑

i v
∗
iOi is a linear combi-

nation of operators. Then it can be decomposed as

〈0|Ω(t)Ω†(0)|0〉 =
∑
n

〈0|eĤtΩ(0)e−Ĥt|n〉〈n|Ω†(0)|0〉

=
∑
n

〈0|Ω(0)|n〉〈n|Ω†(0)|0〉e−Ent =
∑
n

|〈n|Ω†(0)|0〉|2e−Ent (2.2)

where Wn = |〈n|Ω†(0)|0〉|2 ≥ 0 for all n. The local minima occur when Wn6=j = 0

and Wj 6= 0 for some j, and correspond to 〈0|Ω(t)Ω†(0)|0〉 ∝ e−Ejt. Thus we can

extract the energies by finding the local minima, which correspond to the optimal

linear combinations Ω for interpolating the eigenstates |j〉.

We wish to minimize

〈0|Ω(t)Ω†(0)|0〉 =
∑
i,j

v∗i 〈0|Oi(t)Oj(0)|0〉vj =
∑
i,j

v∗iCij(t)vj

by varying the vi. Imposing the normalization condition∑
i,j

v∗i 〈0|Oi(t0)Oj(0)|0〉vj = N

3

for a chosen time slice t0 prevents the trivial solution vi = 0, and we can enforce this

condition using a Lagrange multiplier in the minimization problem,

Λ(v1, · · · , vn, · · · , λ) =
∑
i,j

v∗iCij(t)vj − λ

[∑
i,j

v∗iCij(t0)vj −N

]
=
∑
i,j

v∗i [Cij(t)− λCij(t0)] vj + λN (2.3)

Setting the gradient to zero we obtain

0 =
∂Λ

∂v∗i
=
∑
j

[Cij(t)− λCij(t0)] vj (2.4)

for each i. Thus setting each component of the gradient to zero gives

C(t)v = λC(t0)v (2.5)

where

v =

v1
...
vn

 . (2.6)

is an eigenvector and λ is an eigenvalue of the generalized eigenvalue problem.

The eigenvector v gives the optimum linear combination of interpolating operators to

approximate the eigenstate of λ. For n × n matrices C(t) we can obtain at most n

eigenvalues corresponding to the n lowest energies.

2.2.2 Properties

Let vn, vm denote generalized eigenvectors with generalized eigenvalues λn, λm. Since

C(t) is Hermitian for all t we have

vm
†
C(t)vn = λn(t)vm

†
C(t0)vn = (vn

†
C†(t)vm)∗ = (vn

†
C(t)vm)∗

= (λm(t)vn
†
C(t0)vm)∗ = λ∗m(t)vm

†
C(t0)vn

so

[λn(t)− λ∗m(t)]vm
†
C(t0)vn = 0. (2.7)

4

Real Eigenvalues

Setting n = m gives [λm(t)− λ∗m(t)]vm
†
C(t0)vm = [λn(t)− λ∗m(t)]N = 0, so

λm(t) = λ∗m(t) and the generalized eigenvalues are real.

Orthogonality

If λm(t) 6= λn(t), we must have vm
†
C(t0)vn = 0. Thus, without degeneracy,

vm
†
C(t0)vn = Nδnm. (2.8)

N is arbitrary, so we may choose N = 1, and the eigenvectors are orthogonal on

the metric C(t0). This allows us to distinguish between eigenvalues that are nearly

degenerate.

From n×n matrices C(t) we obtain n eigenvectors, which are forced by the GEVP

to be orthogonal on the metric C(t0). This is only a good approximation to the true

orthogonality if C(t0) is saturated by the n lightest states at time t0 [4]. Thus t0

should be chosen large enough that the contributions of higher states have decayed

away.

Completeness

We have ∑
m

vmvm
†
C(t0)vn =

∑
m

vmδmn = vn

so ∑
m

vmvm
†

= C−1(t0). (2.9)

2.2.3 Spectral Decomposition of Correlation Functions

The spectral decomposition of a two-point correlation function is given by

Cij(t) = 〈0|Oi(t)Oj(0)|0〉 =
∑
p

Zp∗
i Z

p
j

2Ep
e−Ept (2.10)

5

where Zp
i = 〈0|Oi|p〉 gives the overlap factor of the eigenstate |p〉 and the interpolating

operator Oi [4]. Let

vm =

v
m
1
...
vmn

 . (2.11)

denote the generalized eigenvector corresponding to the eigenvalue λm. Then com-

bining the spectral decomposition with the GEVP we obtain

Cij(t)v
m
j =

∑
p

1

2Ep
Zp∗
i Z

p
j v

m
j e
−Ept = λm(t)Cij(t0)vmj =

∑
p

1

2Ep
Zp∗
i Z

p
j v

m
j λm(t)e−Ept0

for all j ≤ n and thus

∑
p

Zp∗
i

2Ep
Zp · vm

[
e−Ept − λm(t)e−Ept0

]
= 0 (2.12)

=
Zm∗
i

2Em
Zm ·vm

[
e−Emt − λm(t)e−Emt0

]
+
∑
p6=m

Zp∗
i

2Ep
Zp ·vm

[
e−Ept − λm(t)e−Ept0

]
(2.13)

for all m, i. This implies that the time dependence of the eigenvalues is given by

λm(t) = e−Em(t−t0) (2.14)

for all m and the Zp and vm obey the orthogonality relation

Zp · vm = 0 (2.15)

for all p 6= m. Using the orthogonality on the metric C(t0) we obtain

1 =
∑
p

vm∗Zp∗Zpvm
e−Ept0

2Ep
=

1

2Em
|Zmvm|2e−Emt0 (2.16)

and thus ∑
i

Zm
i v

p
i =

√
2Eme

Emt0
2 δmp (2.17)

6

Then we can use the completeness relation to solve for the overlap factors. We

have ∑
i

Zm
i

∑
p

vpi v
p∗
j =

√
2Eme

Emt0
2 vm∗j (2.18)

and substituting the completeness relation we obtain

Zm
i =

√
2Eme

Emt0
2

[
vm†C(t0)

]
i
. (2.19)

In principle this allows us to find the energies from a single exponential fit of

the eigenvalues and to reconstruct the correlation functions from the energies and

eigenvalues. However, because we can only calculate finitely many eigenvalues, the

eigenvalues that we calculate contain contributions from the larger energies at small t

before they have decayed away. To account for this, we will need to fit the eigenvalues

with a sum of two exponentials,

λfitn (t) = (1− An)e−En(t−t0) + Ane
−E′

n(t−t0), (2.20)

where E ′n > En and En determines λn(t) in the limit as t→∞ and the higher energies

decay away.

Equation (2.19) only allows us to reconstruct Cij(t) completely in the case where

the dim(C) lightest states dominate Cij(t0) [4]. At large t, the lowest energies domi-

nate because they decay more slowly; however, statistical fluctuations also increase at

large t. The parameter t0 must be strategically chosen to balance these considerations.

2.2.4 Solving The Generalized Eigenvalue Problem

In order to extract the energy spectrum, we must solve the generalized eigenvalue

problem C(t)v = λC(t0)v. (For this discussion, assume that t and t0 are fixed).

Naively, this can be transformed into an ordinary eigenvalue problem as C(t0)−1C(t)v =

λv. However, C(t0)−1C(t) is not necessarily Hermitian. We would prefer to solve

7

the eigenvalue problem for a Hermitian matrix because it is computationally easier

and the resulting eigenvectors will be mutually orthogonal. We can transform the

GEVP into an ordinary eigenvalue problem with a Hermitian matrix by exploiting

the positive-definiteness of C(t0).

A symmetric positive-definite matrix has real positive eigenvalues and a complete

set of orthogonal eigenvectors, so it can be decomposed as C(t0) = UΣUT where the

columns of U are the normalized eigenvectors and Σ is a diagonal matrix with the

eigenvalues along the diagonal. The eigenvectors are orthonormal, so they satisfy

UTU = UUT = I. Then we can transform the GEVP to

(
1√
Σ
UTC(t)U

1√
Σ

)√
ΣUTv = λ

√
ΣUTv (2.21)

Now the GEVP has been reduced to the ordinary eigenvalue problem C̃(t)ṽ =

λṽ, where C̃(t) = 1√
Σ
UTC(t)U 1√

Σ
is Hermitian and ṽ =

√
ΣUTv. The generalized

eigenvectors can be recovered as v = U 1√
Σ
ṽ.

Non-Positive-Definiteness

C(t0) should be positive definite, but statistical fluctuations due to the finite size of

the ensemble can lead small positive eigenvalues to fluctuate into nonpositive values.

If there are any nonpositive eigenvalues,
√

Σ and 1√
Σ

become complex or undefined,

and C̃(t) is not real. These cases must be dealt with in a systematic manner. One

strategy is to eliminate the C(t0) eigenvectors which correspond to the nonpositive

eigenvalues and solve the resulting lower-dimensional eigenvalue problem.

Suppose C(t0) is an n× n matrix with m positive eigenvalues. Let V denote the

n ×m submatrix of U corresponding to eigenvectors with positive eigenvalues, and

let Υ denote the m × m submatrix of Σ corresponding to the positive eigenvalues.

Let C̃(t) be redefined as C̃(t) = 1√
Υ
V TC(t)V 1√

Υ
. This is consistent with the earlier

8

definition when C(t0) is positive definite. Now C̃(t) is a real Hermitian matrix, as

desired. The size of C̃(t) is now m ×m, so we will only be able to calculate the m

lowest energies corresponding to the m largest eigenvalues.

Chapter 3

Finding the Generalized
Eigenvalues

3.1 Statistical Methods

3.1.1 Jackknife Resampling

In order to correctly propagate the statistical errors due to the finite ensemble size,

we used a single-elimination jackknife. For a value xi in an ensemble of size N with

mean x̄, the “jackknife-scaled down” value x̌i is the mean of the ensemble with xi

removed:

x̌i =
1

N − 1

∑
j 6=i

xj =
1

N − 1

(∑
j

xj − xi

)
=

1

N − 1
(Nx̄− xi) = x̄− xi − x̄

N − 1
. (3.1)

The jackknife-scaled down ensemble has the same mean as the original ensemble but

a smaller variance because the scaling-down operation brings all of the values close

to the mean.

The inverse operation gives the jackknife-scaled up value, x̂i = x̄−(N−1)(xi− x̄).

The jackknife-scaled up ensemble has the same mean as the original ensemble but a

larger variance. Applying scaling-up to the scaled-down ensemble gives the original

ensemble.

9

Let F (p1, ..., pn) be a quantity calculated from n parameters, where the set of pa-

rameters (p1, ..., pn) corresponds to an ensemble ofN configurations {(p1k , ..., pnk
)}Nk=1.

To obtain the jackknife estimate of F , F is calculated N times using the scaled-down

parameters {(p̌1k , · · · , p̌nk
)}Nk=1. The N estimates of F are then jackknife-scaled up.

The mean and variance of
{
F̂ (p̌1k , · · · , p̌nk

)
}N
k=1

are the jackknife estimates of the

mean and variance obtained by calculating F using the unscaled parameters and

propagating the errors analytically. Jackknife resampling is a robust method for cal-

culating the variance of a Monte Carlo sample average [1].

3.1.2 Data

Our analysis data are a set of previously calculated two-point correlation functions,

originally analyzed in [2]. The data consist of 469 configurations of the two-point

correlation functions Cij(t) of 16 operators as they evolve over 40 discrete time slices.

Fig. 3.1 (a) shows the ensemble data corresponding to C5,5(t).

Before the data were analyzed, each data point was jackknife-scaled down. Fig.

3.1 (b) shows the jackknife-scaled down ensemble values corresponding to C5,5(t). As

the data show, jackknife-scaling down does not change the mean but reduces the

variance.

After scaling down, the matrices
{[
Ck(t)

]39

t=0

}469

k=1
were symmetrized in i, j by

averaging the upper- and lower-triangular portions. With a finite ensemble, the sym-

metric nature of C(t) becomes subject to statistical fluctuations. Our calculations

rely on the symmetric nature of C(t), so it is necessary to enforce this condition.

10

(a) C5,5(t) Raw values (b) C5,5(t) Jackknife-scaled down values

Figure 3.1: The ensemble values of C5,5(t) are plotted in red, and the averaged values
are plotted in blue. The scaled-down ensemble shows a smaller variance.

3.2 Solving the Generalized Eigenvalue Problem

for a Statistical Ensemble

3.2.1 Matching Eigenvalues Across Configurations

Our C(t0) is a statistical ensemble, and thus its eigenvalues and eigenvectors are also

statistical ensembles. The numpy.linalg.eigh() function returns eigenvalues and

their corresponding eigenvectors in ascending order, but statistical fluctuations can

cause eigenvalues to move to different positions in the ordering. Thus, it is necessary

to check whether the order of the eigenvectors is consistent across time slices and

across configurations and to reorder them if necessary.

Reordering Algorithm

Given an ensemble of N sets of n eigenvectors {Vk = (v1k , ..., vnk
)}Nk=1 from differ-

ent time slices or configurations and a reference set of eigenvectors Vr, we used the

following procedure to match the ordering of each set of eigenvectors in the en-

semble to the reference. For each Vk in the ensemble, we took the product V T
r Vk.

Then (V T
r Vk)ij = vTirvjk . The matrices Vr and Vk should have the same orthonormal

11

columns, possibly antiparallel or in different orders, so the absolute value of V T
r Vk

should be some permutation of the columns of the identity matrix. However, due

to statistical fluctuations, eigenvectors from different configurations are not exactly

orthonormal, and eigenvectors from the same configuration do not remain exactly

orthonormal as t increases. As a result, the entries of V T
r Vk also fluctuate.

Given the absolute value matrix Abs(V T
r Vk) we used the following algorithm to

produce a template for reordering the eigenvectors of Vk. We initialized an n×nmatrix

filled with zeroes to hold the reordering information. We located the largest element in

Abs(V T
r Vk) using the numpy.argmax() function, and replaced the corresponding entry

in the template matrix with a one. We then replaced the entries in the corresponding

row and column of Abs(V T
r Vk) with zeroes. We repeated this process until the matrix

initialized as Abs(V T
r Vk) contained only zeroes. The final template matrix contained

at most one one in each row or column.

If the n-th column of the template had a one in the j-th position, the n-th eigen-

vector was moved to the j-th position. If the n-th column and the n-th row of the

template contained all zeroes, the n-th eigenvector remained in the n-th position the

new ordering. If the n-th column contained all zeroes but the n-th row contained a

one in the j-th position, we followed the cycle (j1j2 · · · jm) where j1 = j, jk+1 is given

by the position of the one in row jk, and jm indicates the all-zero row that terminates

the cycle. The n-th eigenvector was then moved to the jm-th position.

Following a suggestion in [4], we used the eigenvectors from the average config-

uration as the reference. A more detailed explanation is given in sections 3.2.2 and

3.2.3, and the corresponding code is in Sec. A.1.

12

3.2.2 Calculating C(t0)

After jackknife rescaling and symmetrizing the correlation matrices, we used the

numpy.linalg.eigh() function to find the eigenvalues and eigenvectors of each con-

figuration of C(t0). We also calculated the eigenvalues and eigenvectors of the average

Ca(t0) of the scaled-down and symmetrized configurations. We reversed the order of

the eigenvalues and eigenvectors so that they would be arranged in descending or-

der. We then applied our reordering algorithm to the ensemble using the average

eigenvectors as the reference.

Positive-Definiteness

Although C(t0) should be positive definite, statistical fluctuations can cause small

positive eigenvalues to fluctuate into nonpositive values. We discussed how to trans-

form the resulting non-positive definite matrix into a smaller positive definite matrix

in Sec. 2.2.4.

Using the test non pos def() function in Sec. A.2, we can identify the time

slices t0 that result in non-positive definite configurations. The function returns the

following output,

Nonpositive eigenvalue of -27.291601351133917 at t0=0, index=13, N_configurations=469

Nonpositive eigenvalue of -5.130144861983919e-05 at t0=17, index=15, N_configurations=374

Nonpositive eigenvalue of -0.00018879900198779753 at t0=18, index=14, N_configurations=460

Nonpositive eigenvalue of -0.00020619884341343726 at t0=19, index=14, N_configurations=469

Nonpositive eigenvalue of -0.0005175618889847198 at t0=20, index=14, N_configurations=469

Nonpositive eigenvalue of -1.961218051902214e-06 at t0=21, index=11, N_configurations=1

Nonpositive eigenvalue of -0.00034110957418619157 at t0=22, index=13, N_configurations=469

Nonpositive eigenvalue of -0.00021119047751290535 at t0=23, index=13, N_configurations=469

Nonpositive eigenvalue of -0.0002833072607187544 at t0=24, index=13, N_configurations=469

Nonpositive eigenvalue of -8.457823352329674e-05 at t0=25, index=13, N_configurations=468

Nonpositive eigenvalue of -0.00015326501155486037 at t0=26, index=13, N_configurations=469

Nonpositive eigenvalue of -8.074357783843352e-05 at t0=27, index=12, N_configurations=469

Nonpositive eigenvalue of -6.0892296480923185e-05 at t0=28, index=12, N_configurations=468

Nonpositive eigenvalue of -6.663007751460674e-05 at t0=29, index=12, N_configurations=20

Nonpositive eigenvalue of -0.00017839444776630273 at t0=30, index=12, N_configurations=469

Nonpositive eigenvalue of -6.582545416230192e-05 at t0=31, index=12, N_configurations=75

Nonpositive eigenvalue of -8.844588992290538e-06 at t0=32, index=10, N_configurations=4

Nonpositive eigenvalue of -0.0002535737386193676 at t0=33, index=13, N_configurations=469

13

Nonpositive eigenvalue of -0.00012086115360956511 at t0=34, index=12, N_configurations=469

Nonpositive eigenvalue of -7.496014033210394e-06 at t0=35, index=12, N_configurations=29

Nonpositive eigenvalue of -0.0002499499134225854 at t0=36, index=12, N_configurations=469

Nonpositive eigenvalue of -7.259141546309422e-05 at t0=37, index=11, N_configurations=469

Nonpositive eigenvalue of -1.3671939252197858e-05 at t0=38, index=11, N_configurations=281

Nonpositive eigenvalue of -0.0004985517182481691 at t0=39, index=12, N_configurations=469

where index gives the index of the largest nonpositive eigenvalue when the eigen-

values are ordered from largest to smallest, and N configurations gives the number

of configurations with a nonpositive eigenvalue at the specified index. The output

shows that for t0 = 0 and t0 ≥ 17, there are nonpositive eigenvalues, usually in a

large number of configurations. The index of the largest nonpositive eigenvalue also

decreases with t0, reflecting the increased number of nonpositive eigenvalues due to

statistical noise at large t. Although we could correct these configurations with the

method described in Sec. 2.2.4, these results suggest that we should avoid these val-

ues of t0 altogether and fit in the range of smaller t0 where there are fewer statistical

fluctuations.

3.2.3 Solving the Generalized Eigenvalue Problem

For each time slice, we constructed the ensemble
{
C̃k(t)

}469

k=1
using the positive-

definite portion of the eigensystems of
{
Ck(t0)

}469

k=1
as described in sections 2.2.4 and

3.2.2. For each time slice, we also calculated the average C̃a(t) using the average

of the scaled-down and symmetrized configurations of C(t) and the positive-definite

portion of the eigensystem of the average Ca(t0) calculated in section 3.2.2. We

then used numpy.linalg.eigh() to calculate the eigenvalues and eigenvectors of{
C̃k(t)

}469

k=1
and C̃a(t) for each t independently. We reversed the eigenvector order

for timeslices greater than t0 so that they were arranged in descending order. We

applied our reordering algorithm to the set of averages
{
C̃a(t)

}39

t=0
using C̃a(t0 + 1)

as the reference. For each t, we then applied our reordering algorithm to
{
C̃k(t)

}469

k=1

14

using C̃a(t) as the reference.

Our calculations produced an ensemble of values of {λkn(t)}469
k=1 for each eigenvalue

λn and each timeslice t. We calculated the average value for each λn(t) and jackknife-

scaled up each ensemble value. For each λ, we then used the scaled-up values to

calculate the covariance matrix given by

Ci,j =
469∑
k=1

(λk(ti)− λ̄(ti))(λ
k(tj)− λ̄(tj))

N(N − 1)
. (3.2)

In the formula, we divide by N to calculate the variance of the mean. The scatter

plots in Fig. 3.2 show the scaled-up ensemble eigenvalues of λ2 for t0 = 8 and t0 = 12,

which will be fit in the next section. The steep upwards curve at small t which flattens

into a straight line at large t corresponds to the higher energies which leak into the

eigenvalues due to the finite number of basis operators. We will fit a sum of two

exponentials to account for the contributions from higher energies.

(a) λ2(t, t0 = 8) (b) λ2(t, t0 = 12)

Figure 3.2: The ensemble scaled-up values of λ2(t, t0) for t0 = 8, 12. The larger t0
value shows a larger range of values, although the errors are very small in both cases.

15

Chapter 4

Fitting the Eigenvalues

4.1 Fit Fuction

The energies are related to the eigenvalues by

En(t0) = − lim
t→∞

log
λn(t+ 1, t0)

λn(t, t0)
(4.1)

[5]. As t → ∞, λn(t) approaches a pure exponential, but at small t, higher energies

leak in due to the finite eigenvector basis. To account for this, we fit the eigenvalues

to a function of the form

λfitn (t) = (1− An)e−En(t−t0) + Ane
−E′

n(t−t0). (4.2)

The E ′n in the second term accounts for the leaking in of higher energies. The con-

tribution of E ′n decays faster because E ′n > En, so En determines the behavior in the

limit as t goes to infinity. The parameter An and the factors of t − t0 ensure that

λn(t0) = 1 as required by the generalized eigenvalue problem.

4.2 Determining Goodness of Fit

In order to determine the best value of t0 at which to solve the GEVP and the best

range [tmin, tmax] within which to fit each eigenvalue, we compared fits at different

t0, tmin, tmax values using a chi-squared distribution.

16

4.2.1 Chi-squared Test

A good fit function λfit(t) for tmin ≤ t ≤ tmax should minimize the chi-squared test

function

χ2 =
∑

tmin≤ti,tj≤tmax

ti,tj 6=t0

[
λfit(ti)− λ̄(ti)

] (
C−1

)
i,j

[
λfit(tj)− λ̄(tj)

]
. (4.3)

The number of degrees of freedom is the number of data points minus the number

of parameters, Ndof = tmax − tmin − 2. A value of χ2/Ndof ≈ 1 indicates that λfit(t)

is a good fit. However, when comparing fits with different numbers of degrees of

freedom, it is more appropriate to use a chi-squared probability function.

4.2.2 Chi-squared Probability Function

The incomplete gamma function Q(a, x) is defined

Q(a, x) ≡ 1

Γ(a)

∫ ∞
x

e−tta−1dt (a > 0). (4.4)

The complementary cumulative distribution function F (χ2|ν), or tail distribution,

of the chi-squared distribution is the probability that the observed chi-square of a

model will exceed the value χ2 by chance even if the model is correct [6].

The tail distribution function F (χ2|ν) is related to the incomplete gamma function

by

F (χ2|ν) = Q

(
ν

2
,
χ2

2

)
, (4.5)

where ν is the number of degrees of freedom. We used scipy.special.gammaincc()

to evaluate the incomplete gamma function.

The limiting values are F (0|ν) = 1 and F (∞|ν) = 0. Thus, the best fit has the

value of F (χ2|ν) closest to 1, which is the largest value [6].

17

4.3 Fitting Procedure

We fit the five largest eigenvalues for comparison with [2].

4.3.1 Minuit

To minimize the chi-squared test function, we used the iminuit package, which im-

plements Minuit in Python. To fit a given eigenvalue for a given t0, tmin, and tmax,

we constructed the χ2 function and created a Minuit object with the arguments given

in Table 4.1. After the first successful fit of each eigenvalue at each t0, we used the

calculated values of En and E ′n from the previous successful fit as guesses in subse-

quent fits over different time ranges. If there were no existing fits for the current t0,

we used the En calculated at t0 − 1 if it existed.

We called migrad() on the Minuit object to perform the fit. After migrad()

we checked whether the function minimum was valid using m.get fmin().is valid.

For invalid minima, we discarded the data. For valid minima, we called m.hesse()

to recalculate the parabolic errors and discarded the fit data if the error calculation

failed. Minuit returns the minimum value of χ2, the parameter values at the mini-

mum, and the parameter errors, which we denote by δ. We discarded the fit data if

χ2/Ndof > 10, F (χ2|ν) < 10−10, E ′n < En, δEn

En
> 2, or any of the parameters errors

were less than 10−10, because these zero errors indicate that the fit did not properly

converge.

4.3.2 Trial Fits

To find the best fit for a particular eigenvalue at a fixed t0, we used Minuit to minimize

the χ2 function for various values of tmin and tmax. To determine the overall fitting

range, we calculated the fractional errors σλ(t)
λ(t)

at each t and fit within the band around

t0 where the fractional errors were less than 0.15. Within this band, we tested values

18

Minuit object argument Value

En guess 0.1∗
En initial step size 0.00001
En limits (0, 1)
E ′n guess 0.6∗
E ′n initial step size 0.00001
E ′n limits (0, 2)
An guess 0.2
An initial step size 0.00001
An limits (0, 1)
errordef 1
strategylevel 2

Table 4.1: Initial values and constraints on parameters in Minuit object. For a χ2

fit, errrordef = 1 gives the correct errors. A strategy level of 2 produces the most
accurate fit. *Previously calculated values of En and E ′n were used where possible.

of tmin in the range [2, 5] to ensure that there were enough data points from small

t values to accurately fit the higher energy, and tmax in the range [(tmin + 25), 39]

to ensure that a sufficiently large set of data points was used in each fit. For each

fit, we recorded the minimum χ2 reported by Minuit and calculated F (χ2|Ndof).

After running all of the trial fits for a given t0, we selected the undiscarded fits with

the smallest χ2/Ndof and separately selected the undiscarded fits with the largest

F (χ2|Ndof).

4.3.3 Choosing t0

For each eigenvalue to be fit, we tested t0 in the range 2 − 12. For each value of t0,

we used the method in section 4.3.2 to find the best fits for that t0 based on χ2/Ndof

and F (χ2|Ndof). Figure 4.1 shows the goodness of fit as a function of t0. Figure 4.2

show the energies En as a function of t0. A missing plot point for a given t0 indicates

that all fits were discarded for the corresponding eigenvalue and t0.

Figure 4.2 shows that most t0 values lead to approximately the same calculation

19

of En. Figure 4.1 shows that the goodness of fit generally improves with increasing

t0, although for the lowest energy the goodness of fit falls at t0 = 9. Based on these

considerations, we chose t0 = 8 for our reported values.

Chapter 5

Results

Figure 5.1 shows the fits for t0 = 8. The fits are plotted as eEn(t−t0)λn(t). The

decay at small t shows the excited-state contribution e−E
′
n(t−t0) decaying away, and

the flattening at large t shows λn(t) approaching a pure exponential.

The fit parameters are given in Table 5.1. The parameters corresponding to

energies are in the dimensionless form atE, atE
′ because the integer timeslices used

in the fitting procedure correspond to t/at, where at is the lattice spacing at ≈

(5997 MeV)−1 [2]. Table 5.2 gives the discrete energies.

Chapter 6

Conclusion and Further Work

We have calculated the lowest five states of the discrete spectrum of ππ scattering

using a basis of interpolating operators. Beginning with a matrix of two-point correla-

20

Parameter Value

atE0 (10.69± 0.01)10−2

atE
′
0 (65.60± 3.86)10−2

A0 (5.77± 1.24)10−3

tmin, tmax 3, 31
χ2/Ndof 1.21

F (χ2|Ndof) 0.211

atE1 (14.28± 0.03)10−2

atE
′
1 (49.41± 1.72)10−2

A1 (27.90± 2.86)10−3

tmin, tmax 4, 39
χ2/Ndof 1.66

F (χ2|Ndof) 0.0099

atE2 (16.20± 0.04)10−2

atE
′
2 (58.65± 2.65)10−2

A2 (16.83± 2.43)10−3

tmin, tmax 4, 39
χ2/Ndof 1.42

F (χ2|Ndof) 0.054

Parameter Value

atE3 (18.49± 0.01)10−2

atE
′
3 (74.26± 3.66)10−2

A3 (7.25± 1.24)10−3

tmin, tmax 4, 29
χ2/Ndof 1.24

F (χ2|Ndof) 0.198

atE4 (19.04± 0.06)10−2

atE
′
4 (63.48± 3.23)10−2

A4 (16.49± 2.88)10−3

tmin, tmax 4, 39
χ2/Ndof 1.27

F (χ2|Ndof) 0.139

Table 5.1: Fit parameter values for λn(t) when t0 = 8. The parameters atE, atE
′ are

dimensionless.

E0 641.1± 0.6 MeV
E1 856.4± 1.8 MeV
E2 971.5± 2.4 MeV
E3 1108.8± 0.6 MeV
E4 1141.8± 3.6 MeV

Table 5.2: The five lowest discrete energies.

tion functions, we solved the generalized eigenvalue problem to find the eigenvectors

which gave the optimal linear combinations to approximate the eigenstates of the

system, and we extracted the energies from the time-dependence of the eigenvalues.

In [2] these energies are also found and are used to calculate scattering phase shifts

corresponding to the ρ resonance.

In order to solve the GEVP, it was necessary to specify a t0, and we chose the value

21

of t0 that maximized the chi-squared tail distribution across the set of eigenvalues.

We can also measure directly how well the generalized eigenvectors at t0 interpolate

the eigenstates by reconstructing the correlation matrix using Eq. (2.19), as is done

in [4].

The errors on the energies are surprisingly small, approximately one thousandth of

the energies. The minima could be more thoroughly investigated using contour plots

and other tools in Minuit. The uncertainty in the energies could also be estimated

using jackknife resampling, by fitting the scaled-down data one ensemble at a time

and using the variance of the scaled-up parameters to estimate the parameter errors.

22

(a) λ0 (b) λ1

(c) λ2 (d) λ3

(e) λ4

Figure 4.1: The largest value of F (χ2|ν) and the smallest χ2/ν in fitting λn at each
t0.

23

(a) E0 (b) E1

(c) E2 (d) E3

(e) E4

Figure 4.2: The calculated value of En for each t0 with the largest F (χ2|ν), and the
calculated value of En for each t0 with the smallest χ2/ν.

24

(a) λ0 (b) λ1

(c) λ2 (d) λ3

(e) λ4

Figure 5.1: The fits with largest F (χ2|ν) calculated at t0 = 8.

25

Appendix A

Code

This section contains the Python code used to perform the computations. It requires

the following packages to be imported:

import scipy

from scipy import special

import numpy as np

from numpy import linalg

from iminuit import Minuit

import math

A.1 Eigenvector Reordering

The code in this section is used to match eigenvector ordering across configura-
tions and across time slices.

def get_reordering_matrix(ref_eigenvectors, unordered_vectors):

"""

Returns a template for reordering unordered_vectors to match

ref_eigenvectors. The reordering prioritizes the inner products

with the largest absolute value.

"""

eigendim = ref_eigenvectors.shape[1]

product = (np.transpose(ref_eigenvectors)).dot(unordered_vectors)

product = np.absolute(product)

return_matrix = np.zeros([eigendim,eigendim], dtype=float)

max_val = np.amax(product)

while max_val>0:

max_ind_flat = np.argmax(product)

26

row_ind = max_ind_flat//eigendim #destination column

col_ind = max_ind_flat-row_ind*eigendim #column to be moved

return_matrix[row_ind, col_ind] = 1.0

#replace the row and column containing the max val with zeroes

product[row_ind,:] = np.zeros([eigendim], dtype=float)

product[:,col_ind] = np.zeros([eigendim], dtype=float)

max_val = np.amax(product)

return return_matrix

#__

def get_cycle(template, start_ind):

"""

Returns the permutation cycle containing start_ind. If the last column

in the sequence is all zeroes, it is mapped to the first column in the

sequence.

"""

cycle = [start_ind]

current_col = template[:,start_ind]

while np.amax(current_col)>0:

next_ind = np.argmax(current_col)

if next_ind==start_ind:

return cycle

else:

cycle.append(next_ind)

current_col = template[:,next_ind]

return cycle

#__

def cycle_reorder(cycle, eigenvals, eigenvectors):

"""

Reorders eigenvalues and vectors following the permutation given by cycle.

"""

length = len(cycle)

if length==1:

return eigenvals, eigenvectors

else:

return_eigenvals = np.empty(eigenvals.shape, dtype=float)

return_vectors = np.empty(eigenvectors.shape, dtype=float)

for i in range(len(eigenvals)):

if i not in cycle:

return_eigenvals[i] = eigenvals[i]

return_vectors[:,i] = eigenvectors[:,i]

27

for i in range(length-1):

col_ind = cycle[i]

destination = cycle[i+1]

return_eigenvals[destination] = eigenvals[col_ind]

return_vectors[:,destination] = eigenvectors[:,col_ind]

first_ind = cycle[0]

last_ind = cycle[length-1]

return_eigenvals[first_ind] = eigenvals[last_ind]

return_vectors[:,first_ind] = eigenvectors[:,last_ind]

return return_eigenvals, return_vectors

#__

def reorder_with_template(template, eigenvals, eigenvectors):

"""

Reorders the eigenvalues and eigenvectors following the disjoint cycles

in the template.

"""

eigendim = eigenvectors.shape[1]

I = np.identity(eigendim)

if np.array_equal(I,template) is True:

return eigenvals, eigenvectors

else:

col_max = np.empty([eigendim], dtype=float)

for i in range(eigendim):

template_col = template[:,i]

if np.argmax(template_col)==i:

col_max[i] = 0

else:

col_max[i] = np.amax(template_col)

while np.amax(col_max)>0:

start_ind = np.argmax(col_max)

cycle = get_cycle(template, start_ind)

for i in cycle:

col_max[i] = 0

eigenvals, eigenvectors = cycle_reorder(cycle, eigenvals, eigenvectors)

return eigenvals, eigenvectors

#__

def arrange_eigensystem(eigenvals_ensemble, eigenvectors_ensemble, ref_ind=0):

"""

Reorders an ensemble of eigenvectors along the first axis using the specified

index along that axis as the template.

28

"""

#expects an eigenvector ensemble of shape (configurations, nrows, eigendim)

#eigenvalue ensemble of shape (configurations, eigendim)

eigenvals_shape = eigenvals_ensemble.shape

ensemble_size = eigenvals_shape[0]

eigendim = eigenvals_shape[1]

reordered_eigenvals = np.empty(eigenvals_ensemble.shape, dtype=float)

reordered_vectors = np.empty(eigenvectors_ensemble.shape, dtype=float)

ref = eigenvectors_ensemble[ref_ind]

I = np.identity(eigendim, dtype=float)

#loop over ensemble

for i in range(ensemble_size):

template = get_reordering_matrix(ref, eigenvectors_ensemble[i])

if np.array_equal(template, I) is True:

reordered_eigenvals[i], reordered_vectors[i] = eigenvals_ensemble[i], eigenvectors_ensemble[i]

else:

reordered_eigenvals[i], reordered_vectors[i] = reorder_with_template(template, eigenvals_ensemble[i], eigenvectors_ensemble[i])

return reordered_eigenvals, reordered_vectors

A.2 Solving the Generalized Eigenvalue Problem

The code in this section is used to calculate the generalized eigenvalues and
eigenvectors, and the errors in the eigenvalues.

def solve_Ct0(array, t0, avg_array, printing=False, testing=False):

"""

Returns enesmble and average eigenvalues and eigenvectors of Ct0 after

removing nonpositive eigenvalues and their eigenvectors.

"""

#expects ensemble array with shape (times, configurations, dim(C), dim(C))

#average array with shape (times, dim(C), dim(C))

array_shape = array.shape

ensemble_size = array_shape[1]

dim = array_shape[2]

eigenvals_ensemble = np.empty([ensemble_size, dim], dtype=float)

eigenvectors_ensemble = np.empty([ensemble_size, dim, dim], dtype=float)

#solve average Ct0

avg_eigenvals, avg_vectors = eigh_dec_order(avg_array[t0])

#solve each Ct0

29

for i in range(ensemble_size):

Ct0 = array[t0, i]

temp_eigenvals, temp_eigenvectors = eigh_dec_order(Ct0)

#check eigenvector ordering

template = get_reordering_matrix(avg_vectors, temp_eigenvectors)

eigenvals_ensemble[i], eigenvectors_ensemble[i] = \

reorder_with_template(template, temp_eigenvals, temp_eigenvectors)

#check for nonpositive eigenvalues

ind_shift = 0

for j in range(dim):

ind = j-ind_shift

min_eigenval = np.amin(eigenvals_ensemble[:,ind])

if min_eigenval <= 0:

#extract nonpositive eigenvalues from the array

if printing is True:

nonpositive_cond = eigenvals_ensemble[:,ind] <= 0

nonpositive_vals = np.extract(nonpositive_cond, eigenvals_ensemble[:,ind])

#remove the nonpositive eigenvalues and their eigenvectors

eigenvals_ensemble = np.delete(eigenvals_ensemble,ind,1)

eigenvectors_ensemble = np.delete(eigenvectors_ensemble,ind,2)

avg_eigenvals = np.delete(avg_eigenvals, ind)

avg_vectors = np.delete(avg_vectors, ind, 1)

ind_shift += 1

#print the eigenvalue index and number of configurations

#with a nonpositive eigenvalue at that index

if printing is True:

print("Nonpositive eigenvalue of "+str(min_eigenval)+\

" at t0="+str(t0)+", index="+str(j)+",

N_configurations="+str(nonpositive_vals.shape[0]))

if testing is True:

return

return eigenvals_ensemble, eigenvectors_ensemble, avg_eigenvals, avg_vectors

#__

def test_non_pos_def():

"""

Check the ensemble of Ct0 for nonpositive eigenvalues at each t0 value,

and print the information.

"""

np.set_printoptions(precision=2,linewidth=2000, suppress=False, threshold=10000)

filepath = "C"

raw_array = get_raw_data(filepath)

30

avg_array = make_avg_matrix(raw_array)

scaled_down_array = scale_down_and_symmetrize(raw_array, avg_array)

symm_avg_array = make_avg_matrix(scaled_down_array)

for t0 in range(40):

solve_Ct0(scaled_down_array, t0, symm_avg_array, printing=True, testing=True)

#__

def solve_GEVP(array, t0, avg_array, reordering=True):

"""

Returns the generalized eigenvectors and eigenvalues.

"""

#expects ensemble array with shape (times, configurations, dim(C), dim(C))

#average array with shape (times, dim(C), dim(C))

array_shape = array.shape

timeslices = array_shape[0]

ensemble_size = array_shape[1]

dim = array_shape[2]

t0_eigenvals, t0_eigenvectors, avg_t0_eigenvals, avg_t0_eigenvectors = \

solve_Ct0(array, t0, avg_array)

eigenvals_shape = t0_eigenvals.shape

eigendim = eigenvals_shape[1]

GEVP_eigenvals = np.empty([ensemble_size,timeslices,eigendim],dtype=float)

GEVP_eigenvectors = np.empty([ensemble_size,timeslices,eigendim,eigendim],\

dtype=float)

inv_sqt_sigma_arr = np.empty([ensemble_size,eigendim,eigendim],dtype=float)

#Solve average GEVP

avg_GEVP_eigenvals = np.empty([timeslices,eigendim],dtype=float)

avg_GEVP_eigenvectors = np.empty([timeslices,eigendim,eigendim],dtype=float)

#construct average U

U_avg = avg_t0_eigenvectors

UT_avg = np.transpose(U_avg)

#construct sqt_sigma and inv_sqt_sigma

avg_sqt_sigma = np.zeros([eigendim,eigendim], dtype=float)

avg_inv_sqt_sigma = np.zeros([eigendim,eigendim], dtype=float)

for i in range(eigendim):

avg_sqt_sigma[i,i] = (avg_t0_eigenvals[i])**0.5

avg_inv_sqt_sigma[i,i] = 1/avg_sqt_sigma[i,i]

#sove GEVP at each timeslice

for t in range(timeslices):

Ct = avg_array[t]

GEVP_matrix = avg_inv_sqt_sigma.dot(UT_avg).dot(Ct).dot(U_avg).\

dot(avg_inv_sqt_sigma)

#solve ordinary eigenvalue problem

eigenvals, eigenvectors = eigh_dec_order(GEVP_matrix)

avg_GEVP_eigenvals[t] = eigenvals

31

avg_GEVP_eigenvectors[t] = eigenvectors

#reverse order of eigenvectors before t0

for t in range(0,t0):

avg_GEVP_eigenvals[t], avg_GEVP_eigenvectors[t] =

\reverse_eigenvector_order(avg_GEVP_eigenvals[t], avg_GEVP_eigenvectors[t])

#reorder average eigenvectors to match t0+1

avg_GEVP_eigenvals, avg_GEVP_eigenvectors = \

arrange_eigensystem(avg_GEVP_eigenvals, avg_GEVP_eigenvectors, ref_ind=t0+1)

#arrange_eigensystem matches the ordering of the ensemble to the configuration

#at index=ref_ind

#solve GEVP for ensemble

for k in range(ensemble_size):

#construct U and UT

U = t0_eigenvectors[k]

UT = np.transpose(U)

#construct sqt_sigma and inv_sqt_sigma

sqt_sigma = np.zeros([eigendim,eigendim], dtype=float)

inv_sqt_sigma = np.zeros([eigendim,eigendim], dtype=float)

for i in range(eigendim):

sqt_sigma[i,i] = (t0_eigenvals[k,i])**0.5

inv_sqt_sigma[i,i] = 1/sqt_sigma[i,i]

inv_sqt_sigma_arr[k] = inv_sqt_sigma

#sove GEVP at each timeslice

for t in range(timeslices):

Ct = array[t,k]

GEVP_matrix = inv_sqt_sigma.dot(UT).dot(Ct).dot(U).dot(inv_sqt_sigma)

#solve ordinary eigenvalue problem

eigenvals, eigenvectors = eigh_dec_order(GEVP_matrix)

GEVP_eigenvals[k,t] = eigenvals

GEVP_eigenvectors[k,t] = eigenvectors

#reverse order of eigenvectors before t0

for k in range(ensemble_size):

for t in range(0,t0):

GEVP_eigenvals[k,t], GEVP_eigenvectors[k,t] =\

reverse_eigenvector_order(GEVP_eigenvals[k,t], GEVP_eigenvectors[k,t])

I = np.identity(eigendim, dtype=float)

if reordering==True:

#reorder ensemble at each time t to match the average configuration

#at time t

for j in range(timeslices):

ref_vectors = avg_GEVP_eigenvectors[j]

for i in range(ensemble_size):

temp = get_reordering_matrix(ref_vectors,GEVP_eigenvectors[i,j])

if np.array_equal(I,temp)==False:

GEVP_eigenvals[i,j], GEVP_eigenvectors[i,j] =\

reorder_with_template(temp, GEVP_eigenvals[i,j], GEVP_eigenvectors[i,j])

32

#recover GEVP eigenvectors

recovered_vectors = np.empty([ensemble_size,timeslices,dim,eigendim],dtype=float)

for t in range(timeslices):

for k in range(ensemble_size):

recovered_vectors[k,t] = t0_eigenvectors[k].dot(inv_sqt_sigma_arr[k]).\

dot(GEVP_eigenvectors[k,t])

GEVP_eigenvectors = recovered_vectors

return GEVP_eigenvals, GEVP_eigenvectors

#__

def get_GEVP_eigenvals(t0):

"""

Returns the ensemble of calculated eigenvalues for the specified t0.

"""

filepath = "C"

raw_array = get_raw_data(filepath)

avg_array = make_avg_matrix(raw_array)

scaled_down_array = scale_down_and_symmetrize(raw_array, avg_array)

symm_avg_array = make_avg_matrix(scaled_down_array)

GEVP_eigenvals, GEVP_eigenvectors = solve_GEVP(scaled_down_array, \

t0, symm_avg_array)

return GEVP_eigenvals

#______________________________________

def get_scaled_up_eigenvals(GEVP_eigenvals):

"""

Takes in the eigenvalues returned by solve_GEVP and scales them up.

"""

#expects an array of shape (configurations, times, dim(C), dim(C))

shape = GEVP_eigenvals.shape

eigendim = shape[2]

timeslices = shape[1]

configurations = shape[0]

#construct avg matrix

avg = np.empty([eigendim,timeslices],dtype=float)

for i in range(eigendim):

for t in range(timeslices):

total = 0.0

for k in range(configurations):

total += GEVP_eigenvals[k,t,i]

avg_val = total/configurations

avg[i,t] = avg_val

#scale up eigenvalues

33

scaled_up_eigenvals = np.empty([configurations, timeslices, eigendim],dtype=float)

for i in range(eigendim):

for t in range(timeslices):

for k in range(configurations):

scaled_up_eigenvals[k,t,i] = jackkinfe_up(GEVP_eigenvals[k,t,i], avg[i,t], configurations)

return scaled_up_eigenvals

#______________________________________

def get_eigenval_stats(scaled_up_eigenvals, t0):

"""

Computes and returns the average matrix, covariance matrix, inverse

covariance matrix, and the standard error on the mean.

"""

#expects an array of shape (configurations, times, dim(C), dim(C))

shape = scaled_up_eigenvals.shape

eigendim = shape[2]

timeslices = shape[1]

configurations = shape[0]

#construct avg matrix

avg = np.empty([eigendim,timeslices],dtype=float)

for i in range(eigendim):

for t in range(timeslices):

total = 0.0

for k in range(configurations):

total += scaled_up_eigenvals[k,t,i]

avg_val = total/configurations

avg[i,t] = avg_val

#construct covariance matrix

cov = np.empty([eigendim,timeslices, timeslices],dtype=float)

for i in range(eigendim):

for t in range(timeslices):

for s in range(t,timeslices):

total = 0.0

for k in range(configurations):

total += (scaled_up_eigenvals[k,t,i]-avg[i,t])*(scaled_up_eigenvals[k,s,i]-avg[i,s])

cov_term = total/(configurations*(configurations-1))

cov[i,t,s] = cov_term

cov[i,s,t] = cov_term

return avg, cov, get_inv_cov(cov,t0), get_std_err(cov)

#__

def get_inv_cov(cov, t0):

"""

Calculates the inverse covariance matrix. It is necessary to delete

the row and column corresponding to t0 to perform the inversion. A row

and column of zeroes are inserted back in their place so that the indexing

is not changed.

34

"""

#cov has shape (eigendim, times, times)

eigendim = cov.shape[0]

timeslices = cov.shape[1]

#remove the t0 row from the covariance matrix of each eigenvalue

sliced_arr = np.delete(cov, t0, 1)

#remove the t0 column from the covariance matrix of each eigenvalue

sliced_arr = np.delete(sliced_arr, t0, 2)

inv_cov = np.empty(sliced_arr.shape, dtype=float)

#invert the sliced arrays

for i in range(eigendim):

inv_cov[i] = np.linalg.inv(sliced_arr[i])

zero_arr = np.zeros(timeslices, dtype=float)

zero_arr_short = np.zeros(timeslices-1, dtype=float)

#insert a row of zeros at the t0 position in the cov matrix of each eigenval

inv_cov = np.insert(inv_cov, t0, zero_arr_short, 1)

#insert a column of zeros at the t0 position in the cov matrix of each eigenval

inv_cov = np.insert(inv_cov, t0, zero_arr, 2)

return inv_cov

#____________________________

def get_std_err(cov):

"""

Calculate the standard error on the mean from the covariance matrix.

"""

#expects an array of shape (eigendim, times, times)

eigendim = cov.shape[0]

timeslices = cov.shape[1]

std_err = np.empty([eigendim,timeslices], dtype=float)

for i in range(eigendim):

for t in range(timeslices):

std_err[i,t] = np.sqrt(cov[i,t,t])

return std_err

A.3 Fitting the Eigenvalues

The code in this section was used to fit the eigenvalues.

def eigen_fit(A, E1, E2, t0, t):

"""

35

The fit function. Used to define the chi-squared test function.

"""

return (1-A)*np.exp(-E1*(t-t0)) + A*np.exp(-E2*(t-t0))

#___

def chisq_term(t1,t2, avg, inv_cov, A, E1, E2, t0):

"""

Expects avg and inv_cov to be 2D arrays corresponding to a single

eigenvalue. Used to calculated individual terms in the sum defining

the chi-squared test function.

"""

return (avg[t1]-eigen_fit(A, E1, E2, t0, t1))*inv_cov[t1,t2]*\

(avg[t2]-eigen_fit(A, E1, E2, t0, t2))

#__

def chisq(A,E1,E2,avg,inv_cov,t0,min_t,max_t):

"""

Expects avg and inv_cov to be 2D arrays corresponding to a single

eigenvalue. Calculates the chi-squared test function over the fitting

range [min_t,max_t].

"""

func = 0.0

for t in range(min_t,max_t+1):

if t != t0:

for s in range(min_t,max_t+1):

if s != t0:

func = func + chisq_term(t, s, avg, inv_cov, A, E1, E2, t0)

return func

#___

def Q(chisq, ndof):

"""

Calculates the tail of the chi-square distribution function.

"""

return special.gammaincc(ndof*0.5, chisq*0.5)

#__

def fit_eigenvals(avg_eigenvals, inv_cov, t0, tmin, tmax, E1_guess, E2_guess):

"""

Expects avg and inv_cov to be 2D arrays corresponding to a single

eigenvalue. Uses Minuit Migrad to find the best fit over the range

[tmin,tmax]. Returns a 1D array containing the fit data.

"""

#return a row of NaNs if the fit is bad

nan_row = np.full((10), np.nan, dtype=float)

#chi-square test function to be minimized with 3 free parameters

def f_i(A,E1,E2):

return chisq(A,E1,E2,avg_eigenvals,inv_cov,t0,tmin,tmax)

36

#Minuit object

#set errordef to 1 for chi-square fits

m=Minuit(f_i, E1=E1_guess, error_E1=0.00001, limit_E1=(0,1), E2=E2_guess,\

error_E2=0.00001, limit_E2=(0,2), A=0.2, error_A=0.00001, limit_A=(0,1.),\

print_level=0, errordef=1)

#strategy level 2 for more accurate fitting

m.set_strategy(2)

m.migrad();

#make sure the minimum is valid

if m.get_fmin().is_valid:

#recalculate parabolic errors

m.hesse()

#if error calculation fails, return NaNs

if m.get_fmin().hesse_failed:

print("hesse failed")

return nan_row

min_chisq = m.fval

ndof = tmax-tmin-2

chisq_per_ndof = min_chisq/ndof

values = m.values

errors = m.errors

A = values["A"]

A_err = errors["A"]

E1 = values["E1"]

E1_err = errors["E1"]

E2 = values["E2"]

E2_err = errors["E2"]

Q_val = Q(min_chisq, ndof)

#if chisq too big, return NaNs

if chisq_per_ndof > 10:

return nan_row

#if Q is zero, return Nans

elif Q_val <= 10**-10:

return nan_row

#if E2<E1, return NaNs

elif E2-E1 <= 0:

return nan_row

#if any parameter errors are zero, something must have gone wrong

37

#return NaNs

elif A_err <= 10**-10 or E1_err <= 10**-10 or E2_err <= 10**-10:

return nan_row

#if percent error is too large, return NaNs

elif E1_err/E1 > 2:

return nan_row

#if the fit passed all the checks

else:

return np.array([min_chisq, ndof, chisq_per_ndof, Q_val, \

A, A_err, E1, E1_err, E2, E2_err])

#if the fit is not valid

else:

print("invalid fit")

return nan_row

#___

def run_fits(avg_eigenvals, inv_cov, t0, tmin_lim, tmax_lim,\

E1_guess=0.1, E2_guess=0.6):

"""

Expects avg and inv_cov to be 2D arrays corresponding to a single

eigenvalue. Runs fits within different subsets of the range

[tmin_lim, tmax_lim]. Returns an array of fit data with extra space

filled by NaNs.

"""

#initialize best guesses for E1, E2

E1 = E1_guess

E2 = E2_guess

#100 indices-space for all the run_fits

#12 indices-tmin, tmax, fit data

data = np.full((100, 12), np.nan, dtype=float)

tstart = max(2, tmin_lim)

tstop = min(40, tmax_lim+1)

ind = 0

for tmin in range(tstart,5):

for tmax in range(tmin+25,tstop):

data[ind,0] = tmin

data[ind,1] = tmax

data[ind,2:] = fit_eigenvals(avg_eigenvals, inv_cov, t0, tmin, tmax, E1, E2)

if np.isnan(data[ind,4])==False and data[ind,4]<2:

#if the fit didn’t fail and the chisquare is not too big,

#set the new best guess for E1 and E2

E1 = data[ind,8]

E2 = data[ind,10]

ind += 1

38

return data

#___

def fit_main(eigen_ind_start, eigen_ind_end, t0_ind_start, t0_ind_end):

"""

Fits the eigenvalues in the range at each of the t0 bins in the range.

Saves all successful fit data.

"""

16 eigenvals, 40 times, 12 data points for each fit

#store the fit with the best chisq and best Q for each eigenval, t0 bin

Q_matrix = np.full((16, 40, 12), np.nan, dtype=float)

chi_sq_matrix = np.full((16, 40, 12), np.nan, dtype=float)

#solve the GEVP for each t0

for t0 in range(t0_ind_start, t0_ind_end+1):

GEVP_eigenvals = get_GEVP_eigenvals(t0)

scaled_up_eigenvals = get_scaled_up_eigenvals(GEVP_eigenvals)

avg, cov, inv_cov, std_err = get_eigenval_stats(scaled_up_eigenvals, t0)

#fit every eigenval at this t0

for eigen_ind in range(eigen_ind_start, eigen_ind_end+1):

#choose the range of times within which to fit this eigenval

#calculate the percent error at each time slice

error_ratio = np.empty((40), dtype=float)

for l in range(40):

error_ratio[l] = std_err[eigen_ind,l]/avg[eigen_ind,l]

###

#to determine the fitting range, start at t0 and move outward in

#both directions until percent errors get too big

l=t0

ratio = error_ratio[l]

while ratio < 0.15 and l>0:

l = l-1

ratio = error_ratio[l]

if ratio < 0.15:

tmin_lim = l

else:

tmin_lim = l+1

l=t0

ratio = error_ratio[l]

while ratio < 0.15 and l<39:

l = l+1

ratio = error_ratio[l]

if ratio < 0.15:

39

tmax_lim = l

else:

tmax_lim = l-1

#if the fitting range is too narrow, the eigenval can’t be fit

#then break because all eigenvals need to be fit at the same t0

if tmax_lim-tmin_lim<25 or tmin_lim>4:

print("Errors too large at i="+str(eigen_ind)+", t0="+str(t0))

break

###

if (t0>t0_ind_start) and \

(np.isnan(Q_matrix[eigen_ind,t0-1,4])==False) and \

Q_matrix[eigen_ind,t0-1,4]<2:

#if the previous t0 gave a valid E1 and reasonble chisq,

#use E1 guess from previous t0

data = run_fits(avg[eigen_ind], inv_cov[eigen_ind], t0, \

tmin_lim, tmax_lim, E1_guess=Q_matrix[eigen_ind,t0-1,8])

else:

data = run_fits(avg[eigen_ind], inv_cov[eigen_ind], t0, \

tmin_lim, tmax_lim)

#if data for this t0 is all nans

#break because all eigenvals need to be fit at the same t0

if np.isnan(np.nanmax(data[:,4]))==True:

print("No good fits for i="+str(eigen_ind)+", t0="+str(t0))

break

else: #if the data isn’t all nans, save to .csv

save_str = "eigen_" + str(eigen_ind) + "_t0_" + str(t0) + ".csv"

np.savetxt(save_str, data, delimiter=",")

print("Ran fits for i="+str(eigen_ind)+", t0="+str(t0))

#find the fits with best chisq and Q values

chisq_per_ndof = data[:,4]

Q = data[:,5]

best_chisq_ind = np.nanargmin(chisq_per_ndof)

best_Q_ind = np.nanargmax(Q)

#save best fits in separate arrays

Q_matrix[eigen_ind, t0] = data[best_Q_ind]

chi_sq_matrix[eigen_ind, t0] = data[best_chisq_ind]

#check for negative chisq

min_chisq_per_ndof = np.nanmin(chisq_per_ndof)

if min_chisq_per_ndof <= 0:

print("Nonpositive chisq at eigenvalue " + str(eigen_ind)\

+ ", t0="+str(t0))

print("chisq="+str(best_chisq[4]))

#after iterating over all t0

40

for eigen_ind in range(eigen_ind_start, eigen_ind_end+1):

#save the best fit data

np.savetxt("best_Q_per_t0_"+str(eigen_ind)+".csv", Q_matrix[eigen_ind], delimiter=",")

np.savetxt("best_chisq_ndof_per_t0_"+str(eigen_ind)+".csv", chi_sq_matrix[eigen_ind], delimiter=",")

A.4 Utility Functions

The functions in this section perform simple operations and are included only
so that the code is self-contained.

def symmetrize(array):

"""

Symmetrize a matrix by averaging corresponding values.

"""

#expects array of shape (dim(C), dim(C))

dim = array.shape[0]

for i in range(dim):

for j in range(i,dim):

array[i,j] = (array[i,j]+array[j,i])/2

array[j,i] = array[i,j]

return array

#___

def get_raw_data(filepath):

"""

Iterates through the raw data and organizes it into a numpy array.

filepath is the directory address for the datafiles.

"""

ensemble_size = 469

timeslices = 40

dim = 16

raw_array = np.empty([timeslices, ensemble_size, dim, dim], dtype=float)

#Iterate through datafiles

for i in range(dim):

for j in range(dim):

fullpath = filepath + "/C_" + str(i) + "_" + str(j)

datafile = open(fullpath, "r")

lines = datafile.readlines()

for k in range(timeslices):

for l in range(ensemble_size):

#line number for the kth timeslice in the lth ensemble member

line_number = 1 + k + 40*l

line = lines[line_number]

#find the index of the space, which is one index before the numerical data

space_ind = line.find(" ")

data = float(line[space_ind+1:])

41

raw_array[k,l,i,j] = data

return raw_array

#__

def make_avg_matrix(raw_array):

"""

Returns the ensemble average matrix.

"""

#expects array shape (times, configurations, dim(C), dim(C))

array_shape = raw_array.shape

timeslices = array_shape[0]

ensemble_size = array_shape[1]

dim = array_shape[2]

avg_array = np.empty([timeslices, dim, dim], dtype=float)

for i in range(dim):

for j in range(dim):

for k in range(timeslices):

avg = 0.0

for l in range(ensemble_size):

avg += raw_array[k,l,i,j]

avg = avg/ensemble_size

avg_array[k,i,j] = avg

return avg_array

#___

def jackkinfe_down(raw_val, mean, n):

"""

Computes the jackknife scaled-down value.

"""

scaled_down_val = mean-(raw_val-mean)/(n-1)

return scaled_down_val

#__

def jackkinfe_up(raw_val, mean, n):

"""

Computes the jackknife scaled-up value.

"""

scaled_up_val = mean-(n-1)*(raw_val-mean)

return scaled_up_val

#__

def scale_down_and_symmetrize(raw_array, avg_array):

"""

Jackknife scales down the entries in each correlation matrix in the

ensemble, then symmetrizes the matrices.

"""

#expects an array of shape (times, configurations, dimc(C), dim(C))

array_shape = raw_array.shape

timeslices = array_shape[0]

ensemble_size = array_shape[1]

42

dim = array_shape[2]

scaled_down_array = np.empty(array_shape, dtype=float)

for i in range(dim):

for j in range(dim):

for k in range(timeslices):

avg_val = avg_array[k,i,j]

for l in range(ensemble_size):

raw_val = raw_array[k,l,i,j]

scaled_down_val = jackkinfe_down(raw_val, avg_val, ensemble_size)

scaled_down_array[k,l,i,j] = scaled_down_val

#Symmetrize

for k in range(timeslices):

for l in range(ensemble_size):

scaled_down_array[k,l] = symmetrize(scaled_down_array[k,l])

return scaled_down_array

#___

def eigh_dec_order(matrix):

"""

Returns the eigenvalues and eigenvectors of a Hermitian matrix in decreasing order.

"""

eigenvals, vectors = np.linalg.eigh(matrix)

eigenvals, vectors = reverse_eigenvector_order(eigenvals, vectors)

return eigenvals, vectors

#____________________________________

def reverse_eigenvector_order(eigenvals, eigenvectors):

"""

Returns the eigenvalues and eigenvectors in reverse order.

"""

eigendim = len(eigenvals)

reordered_eigenvals = np.empty(eigenvals.shape, dtype=float)

reordered_vectors = np.empty(eigenvectors.shape, dtype=float)

for j in range(eigendim):

reordered_eigenvals[j] = eigenvals[eigendim-1-j]

reordered_vectors[:,j] = eigenvectors[:,eigendim-1-j]

return reordered_eigenvals, reordered_vectors

43

Bibliography

[1] Knechtli, Francesco; Günther, Michael and Peardon, Michael. Lattice
Quantum Chromodynamics: Practical Essentials. Springer, 2017.

[2] D. Wilson, R. Briceño, J. Dudek, R. Edwards and C. Thomas, Phys. Rev.
D92 (2015) 094502.

[3] Gasiorowicz, Stephen. Quantum Physics. New York: Wiley, 2003.

[4] J. Dudek, R. Edwards, N. Mathur and D. Richards, Phys. Rev. D77 (2008)
034501.

[5] B. Blossier, M. Della Morte, G. Von Hippel, T. Mendes and R. Sommer, JHEP
04 (2009) 094.

[6] Press, William H., Teukolsky, Saul A., Vetterling, William T. and Flannery,
Brian P. Numerical Recipes in C. 2nd ed. Cambridge: Cambridge University
Press, 1992.

44

	Acknowledgments
	List of Figures
	List of Tables
	Abstract
	Introduction
	Background
	Correlation Matrices
	The Generalized Eigenvalue Problem
	Derivation
	Properties
	Spectral Decomposition of Correlation Functions
	Solving The Generalized Eigenvalue Problem

	Finding the Generalized Eigenvalues
	Statistical Methods
	Jackknife Resampling
	Data

	Solving the Generalized Eigenvalue Problem for a Statistical Ensemble
	Matching Eigenvalues Across Configurations
	Calculating C(t0)
	Solving the Generalized Eigenvalue Problem

	Fitting the Eigenvalues
	Fit Fuction
	Determining Goodness of Fit
	Chi-squared Test
	Chi-squared Probability Function

	Fitting Procedure
	Minuit
	Trial Fits
	Choosing t0

	Results
	Conclusion and Further Work
	Code
	Eigenvector Reordering
	Solving the Generalized Eigenvalue Problem
	Fitting the Eigenvalues
	Utility Functions

