- 1. Evaluate each integral below. You must show all necessary steps including substitutions, integration by parts, partial fractions, etc.
- (a) $\int \sin^3(x) \cos^2(x) \, dx$

(b) $\int \frac{x^2}{\sqrt{9-x^2}} dx$

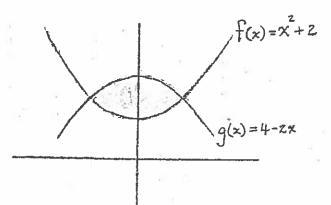
(c) $\int x \cos(3x) dx$

$$(d) \int \frac{2x^2 + x - 3}{x^2 - x} dx$$

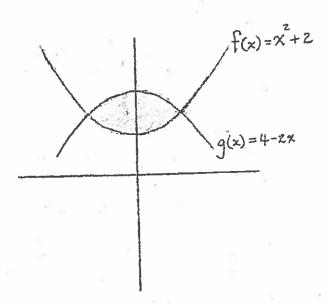
(e)
$$\int \frac{e^x}{1 + e^{2x}} dx$$

2. Determine if the integral $\int_{3}^{\infty} \frac{\ln x}{x^3} dx$ is convergent or divergent. Evaluate the integral if it is convergent.

3. Consider the region bound by the curves $f(x) = x^2 + 2$ and $g(x) = 4 - x^2$ that is shown below. (a) Find the area of this region by evaluating the proper integral.

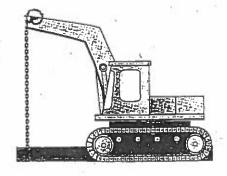


(b) Find the volume of the solid obtained by revolving this region about the x-axis.

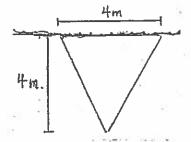


is 30 ft. long and

4. A uniform chain that weighs 60 lbs is hanging vertically from a crane. Find the work required to roll up 20 ft of the chain.



5. An isosceles triangular plate is submerged vertically under the surface of a freshwater lake. The triangular plate has a 4 meter base and a 4 meter height. The base of the plate is on the water surface as shown below. The density of water is $1000 \ kg/m^3$, and the gravity constant is assumed to be $10 \ m/s^2$. Find the hydrostatic force acting against the plate.



6. Solve the differential equation $\frac{dy}{dx} = (x^2 + 1)\sqrt{y}$, y(1) = 1.

- 7. Brine containing 1lb/gal of salt enters a tank at 2 gal/min that initially contains 100 gal of fresh water. The stirred mixture leaves the tank at 2 gal/min. Let A(t) represent the amount of salt in the tank at time t.
 - (a) Set up the differential equation that models the rate of change of salt in the tank.
 - (b) Solve the differential equation for A(t).

8. Express the number $1.\overline{414} = 1.414414414...$ as a ratio of two integers which have no common factors larger than 1.

9. Determine if the series $\sum_{n=1}^{\infty} \frac{e^n}{e^n - 1}$ is convergent or divergent. If convergent, find the sum.

10. Determine if the series $\sum_{n=1}^{\infty} (-1)^n \frac{(\sqrt{2})^n}{3^{2n+1}}$ is convergent or divergent. If convergent, find the sum.

11. Determine if the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n+\ln n}$ is absolutely convergent, conditionally convergent or divergent.

12. Find the radius and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(2x-3)^n}{\sqrt{n} \, 3^n}$.

13. Evaluate the integral $\int \frac{x^3}{2+x^7} dx$ as a power series.

14. Find the first four terms of the Taylor series for $f(x) = \frac{1}{x^2}$ at a = 1.

15. (4pts each) If the statement is always true, write TRUE. Otherwise write FALSE and make the proper correction to make the statement true.

(a) $\int_{2}^{5} \sqrt{x} \, dx \approx S_8 = \frac{1}{3} \left[\sqrt{2} + 4\sqrt{5/2} + 2\sqrt{3} + 4\sqrt{7/2} + 2\sqrt{4} + 4\sqrt{9/2} + \sqrt{5} \right]$ Using Simpson's approximation with n = 6.

- ______(b) If a power series $\sum_{n=1}^{\infty} c_n (x-a)^n$ was found to have a radius of convergence, $R=\infty$, then the ratio (or root) test resulted in a limit equal to ∞ .
- (c) If f is an even function that is continuous on [-a,a], then $\int_{-a}^{a} f(x) = 0$.
- _____(d) If $\lim_{n\to\infty} b_n = 0$, then the series $\sum_{n=0}^{\infty} b_n$ is convergent.
- (e) The distance from x = 0 to $x = \pi/4$ along the curve $f(x) = \ln(\cos x)$ is equal to the value of $\int_{0}^{\pi/4} \sec x \, dx$.