Precise Definition of a Limit

Prelab: Read definition 1 on page 83. Review Figures 3 – 6 on page 107. Read Example 2 on page 108 as well as the three paragraphs before this example.

In previous sections you were working with the “intuitive” definition of a limit. Using the “precise” definition, we can quantify how close \(x \) must be to \(a \) in order for \(f(x) \) to be within some specified distance from \(L \).

Precise Definition of a Limit: Let \(f \) be a function defined on some open interval that contains the number \(a \), except possibly at \(a \). We say that the limit of \(f(x) \) as \(x \) approaches \(a \) is \(L \), and we write

\[
\lim_{x \to a} f(x) = L
\]

if for every number \(\varepsilon > 0 \) there is a number \(\delta > 0 \) such that

To understand the definition above, a visual approach can be helpful.

Example 1: The graph of \(f(x) = x^3 + 1 \) is shown.
(a) Illustrate the above definition as it applies to the limit equation, \(\lim_{x \to 1} f(x) = 2 \).

(b) On the graph provided, label \(a \), \(L \), and \(\varepsilon \), where \(\varepsilon = 0.5 \).

(c) Calculate the value of \(\delta \) (this requires a calculator). That is, determine how close to 1 we must take \(x \) in order for \(f(x) \) to be within 0.5 of 2.
The example above shows how the precise definition of a limit is used to find a specific δ, given a specific ε. One example is not enough to prove the limit written in 1(a). The proof of this limit must hold for any ε. The proof involves two parts:

1.

2.

Example 2: (a) Prove $\lim_{x \to 4}(1 - 2x) = -7$ using the ε, δ definition (precise definition) of a limit.

1.

2.

(b) Illustrate the precise definition and label $a, L, \varepsilon,$ and δ.

2-2
Work each problem showing all supporting work. You may use your textbook, lab and notes. Students may work cooperatively but each submits his/her own set of Lab Exercises.

1. (a) Use the graph below to estimate the following:

\[\lim_{x \to 2} f(x) = \]
\[\delta = \text{_____ when } \varepsilon = 1 \]

(b) Label \(a, L, \varepsilon \) and \(\delta \) on the graph as in Exercises 1 and 2.

2. Prove \(\lim_{x \to 2} \left(7 - \frac{1}{2}x \right) = 6 \) using the \(\varepsilon, \delta \) definition (precise definition) of a limit.
3. (a) The formal limit definition, “for every $\varepsilon > 0$, there exists a $\delta > 0$ such that,

$$\left| \sqrt{13 - x} - 2 \right| < \varepsilon \text{ whenever } |x - 9| < \delta$$

defines the limit equation________________________.

(b) Find δ, when $\varepsilon = 1$. Show the steps of computation below.

(c) Illustrate the precise definition on the graph of $f(x)$ below and label the symbol and value for a, L, ε, and δ.

![Graph of a function](image-url)