VIRGINIA AREA LINGUISTICS CONFERENCE

PROGRAM BOOKLET

HOSTED BY WILLIAM & MARY
SATURDAY APRIL 17, 2021
Order of Talks:

Phonetics and Phonology
1. Cross-Dialectal Vowel Mapping and Glide Perception
2. Spot the (d/t)ifference: Examining sensitivity to negative lag voicing across US dialects
3. Quantifying Dimensions of Vowels Space in Patients with Schizophrenia and Controls

Psycholinguistics
1. The Supportive Influence of Semantics on Morphosyntactic Comprehension
2. The student presented to the student: Effects of lexical repetition and syntactic structure on sentence processing.
3. “Reading a book, the dog barked”: Prominence Hierarchy and the Acceptability of Dangling Modifiers
4. Linguistic Measures of Symptomatology in Schizophrenia
5. Retrieval interference in processing of RCs: Evidence from the visual-world paradigm

Language Acquisition
1. The development of vowel length as a subphonemic cue
2. TBA
3. Comparing the Etymological Makeup of Juvenile and Preadolescent Vocabulary

Syntax and Field Methods
1. Verb Regularity Predicts Spanish Heritage Speakers’ Mood Morphology Production
2. Labovian variation in Appalachian English verbs as an Optional Pruning rule
3. Vratničići: A descriptive grammar

Sociolinguistics
1. “Jar Jar is the Key to All This”: The Use of Ethnicity, Dialect, and Othering in Star Wars Episode I - The Phantom Menace
2. America or America? A study of topic-based shifting in a US expat in London
3. Captioning chefs: Examining ideologies of intelligibility through selective subtitles in Diners, Drive-Ins and Dives
4. Going Down Down: Use of “punk” accent features across pop punk and pop genre albums
5. Give It to Me Straight: The Implications of the HONESTY IS STRAIGHT Metaphor on Perceptions of Sexuality
6. Media Isn’t Your Friend: Ethnicity and Language Subordination in the television show Friends
7. TBA

Keynote Talk
1. The intersection of race, place, and language change in post-Katrina New Orleans
Cross-Dialectal Vowel Mapping and Glide Perception

Perception and word processing tasks support evidence for dialect-specific encodings of sounds and word variants (Sumner & Samuel 2009). These encodings directly link an individual speaker’s production to their categories of perception. Previous work demonstrates that a speaker’s vowel production, and the production most common amongst their community of practice, affects their categorical vowel perception (Fridland & Kendall 2012). We have found this interplay between vowel production and vowel perception to affect the perception of the English glide [j] which is phonetically realized as vowel transition.

Formant transitions from a high-front vowel to a central or low-back vowel mimic the formant signature of a canonical [j]. Forms like [ki.a] having what we call an “acoustic glide,” making it confusable with [ki.ja] (Hogoboom 2020). Our previous research has found that listeners may still perceive a glide even in cases where the canonical formant transitions are absent, such as in [e.a] sequences, as mapping to the monophthongal [e] to the high-front endpoint of the diphthong [e.i]. This mapping and “imagined distance” gave rise to what we call “phantom glides”-- the absence of a [j] in the absence of the formant movements of a [j]. This work pushes the boundaries of perceptual mapping’s effects on [j] perception by examining the perceptual salience of dialect-specific encodings.

Our investigation’s next stage pushed the bounds of imagined distance. Appalachian English (AE) speakers produce [a1] as a monophthong with a low-front target region (Labov et al. 2006). Using this unique production, we crafted a forced-choice perception task to test the frequency of phantom glide perception. This forced-choice task was virtually deployed through Ibex Farm. 96 participants (45 of which were native AE speakers) heard 30 different English words ending in [i], [a], or monophthongal [a1] (i.e. tree, coma, pie) that had been suffixed with either [-a] or [-ja]. They were asked to identify which suffixed form they heard (“pie-a” or “pie-ya”). The expectation was that [i.a] sequences would give rise to acoustic glides, [e.a] sequences would act as a control, and monophthongal [a1.a] sequences incur give rise to phantom glides if influenced by perceptual mapping. If perceptual mapping was most influenced by habitual, native production, we expected AE speakers to map the monophthongal [a1] to a low-front position and perceive fewer phantom glides.

Speakers of both dialects sometimes mapped monophthongal [a1] as having a high-front end point like diphthongal [a1] (combined results in Fig. 1). This incurred the perception of vowel distance and transition necessary to perceive phantom glides. Significantly more glides were perceived in our phantom glide, monophthongal [a1.a], condition than in our control, [a.a], condition. As expected, the most glides were perceived in our acoustic glide, [i.a], condition. For AE speakers, the academic register of the task may have triggered a response using what participants’ perceived to be their most prestigious, prescriptively “correct” underlying phonemic forms, like diphthongal [a1].

To perceive phantom glides, participants mapped static formants in monophthongal [a1.a] stimuli (Fig. 2) to a diphthongal [a1] with a high-front endpoint (Fig. 3), which incurred the necessary F1 fall and rise for glide perception. Participants in both dialect groups perceived a glide that was truly absent from the speech stream. This shows that perceptual mapping is not limited to influence from listeners’ natural production.
Figure 1. Combined Results (n=92). Only participants who correctly identified 80% of the suffixes when presented with our control type were included in analysis.

Figure 2. Spectrogram of monophthongal aɪ.a stimuli

Figure 3. Proposed perceptual mapping of monophthongal aɪ.a stimuli

References:

Spot the (d/t)ifference: Examining sensitivity to negative lag voicing across US dialects

English is largely accepted to contrast stops based on [aspiration]: for instance, short-lag VOT /t/ contrasts aspirated, long-lag VOT /tʰ/. Other languages, like Spanish, contrast stops based on [voice]: voiced, negative-lag VOT /d/ contrasts short-lag VOT /t/. Recent work has shown high rates of negative-lag VOT in the stops of speakers of Southern US English varieties (Jacewicz, Fox & Lyle 2009), leading to a debate on the underlying cause of this pattern; Hunnicutt and Morris (2016) argue that Southern US English contrasts [+voice] with [+aspiration], while Salmons (2020) claims that Southerners simply use lead voicing as phonetic enhancement of an [aspiration] contrast. Given that previous perception studies have shown that English listeners have poor sensitivity to negative-lag voicing relative to speakers of languages like Spanish (McKelvie-Sebileau & Davis 2014), we designed a perception experiment to test whether Southern US speakers show comparable sensitivity to negative lag voicing as Spanish speakers.

Stimuli came from recordings of five speakers: two actors performing a Southern dialect, two native Southern-English speakers, and one native Spanish speaker. All speakers produced negative lag voicing in these guises without instruction. We focused on /b/-initial and /pʰ/-initial English words and made two versions for each word, keeping or removing the negative lag voicing (/b/ words) or aspiration (/pʰ/ words). In the experiment, participants were presented with pairs of recordings that were identical, and pairs of recordings that differed only in the presence/absence of negative lag voicing or aspiration. Participants indicated whether the two pairs of words were the same or different (an AX discrimination task).

We recruited 20 monolingual English speakers from Northern Virginia (NOVA), 16 monolingual English speakers from the Southern US, and 9 bilingual Spanish-English speakers. Across all conditions and participant groups, respondents mostly indicated that they could not tell a difference between either matched or mismatched stimuli. As predicted by the phonological status of aspiration vs. voicing in English, results showed that participants from NOVA were more sensitive to mismatching aspirated tokens (~50% correct) vs. mismatching voicing tokens (~25% correct). Southern US participants patterned similarly, which we could interpret as meaning that the increased negative lag voicing in their speech is phonetic, not phonological. However, Spanish-speaking participants were also significantly better at detecting mismatched aspirated vs. voiced tokens (though they were significantly worse at distinguishing aspiration mismatches than the monolingual English groups (p <0.001).

Taken together, our results are likely more reflective of our stimuli than listener perceptual abilities. We identify two issues with the stimuli. First, we used words instead of nonsense syllables. Second, in creating mismatching tokens, we only changed stimuli on one dimension (removing aspiration or negative lag voicing), when there are multiple cues to stop contrasts in each language (e.g., Dmitrieva et al. 2015). While our results are not uninformative in themselves, they suggest that future research would have to consider additional stop contrast cues in order to more accurately ascertain whether Southern US English speakers truly contrast [+voice] with [+aspiration].
Quantifying Dimensions of Vowel Space in Patients with Schizophrenia and Controls

The speech of patients with schizophrenia has been characterized as being aprosodic, or lacking pitch variation. Recent research on linguistic aspects of schizophrenia has looked at the vowel space to determine if there is some correlation between measures of vowel space utilization and patient status (Compton et al., 2018). Additional research based on the Compton study noted that measurements of Euclidean Distance (ED), which is the average distance from the center of the vowel space to all vowels produced, and vowel density, which is the proportion of vowels clustered together in the center of the vowel space, were significantly correlated for patients with schizophrenia, but not for controls; this correlation was primarily due to a subset of 13 patients (Hogoboom et al., submitted). In addition to the density and ED relationship, they found that ED independently was a weak predictor of patient status. These previous studies utilized Prosogram, a tool that relies on acoustics to sift through the sound files and identify the vowels; the accuracy of this vowel identification process could be improved to determine if there was some measurable difference between the vowel space of patients with schizophrenia in comparison to controls. This research aims to clarify the relationship between the vowel space and patient status by gathering more reliable measurements of the vowels from these previous datasets. We seek to determine if there is a stronger correlation between vowel space usage and patient status, which was previously masked by incomplete vowel measurements.

In Compton’s study, patients with schizophrenia and controls each read a short passage in order to provide multiple instances of each vowel for later measurements. Our study takes the same recorded data, but uses FAVE, a forced aligner which takes both the acoustics and a transcription of each sound file to match each sound in the audio to sounds in the transcript, to gather a more comprehensive set of vowel measurements prior to analysis.

Our current research finds that ED is a strong predictor of patient status (p<0.05). While Hogoboom’s previous work found that ED and density were independently significant, current work finds that those two variables are correlated. These results show that there is a relationship between ED and an individual’s status as a patient or control, where patients have lower ED and controls have higher ED. While controls have higher ED, they do not have more distance between their [i] and [a] sounds; rather, they have more vowels dispersed at the edges of the vowel space. There is also a significant interaction between patient status and the specific vowel sound, as edge vowels, like [i] and [a], have significantly different EDs between patients and controls (p<0.05), while more centralized vowels, like [ɛ] and [u], were not significantly different (p>0.05).

Overall, this research clarifies differences in utilization of the vowel space between patients with schizophrenia and controls, which could ultimately be used to create more quantitatively-defined linguistic measurements for diagnosis that are less subject to individual clinical listeners.
References

The Supportive Influence of Semantics on Morphosyntactic Comprehension
Madeleine Wade

Though the interplay of morphosyntax and semantics is key to understanding the human language system, it has proven difficult to study morphosyntax in the absence of semantics since this requires careful manipulation of meaning. This study has taken on this task by systematically removing meaning from syntactically complex sentences.

Two methods of removing meaning were used to create Nonsense English and Jabberwocky forms. Nonsense sentences were created by replacing nouns with semantically mismatched nouns that were matched for morphology and frequency (though N-Watch1). Jabberwocky sentences were formed by replacing open-class morphemes with phonetically legal non-words, while preserving closed-class morphemes. Four sentence structures were used. Examples of each form are below:

English: The canoe carried the campers and some snacks for the trip
Nonsense: The calorie carried the choppers and some slugs for the trout
Jabberwocky: The canore corried the chappers and some snocks for the trouk

Experiment 1 used a novel Sentence Judgment Task (SJT) which asked whether a sentence was “complete.” Sentences were presented through self-paced reading, and self-paced reading time was measured.

This experiment was conducted over Mechanical Turk with 133 participants. Overall accuracy was 0.794 (±0.00501). The data of participants whose overall accuracy was below 0.567 were purged. Data was analyzed using linear mixed effects modeling (lme42). A significant effect of form was found for participants’ accuracy on the SJT (Figure 1), with participants performing much better on English sentences than Nonsense or Jabberwocky (p=0.00062) and slightly better on Jabberwocky than Nonsense (p=0.00249). Form also had a significant effect on SJT reaction time (Figure 2). SJT reaction times were slower for Nonsense sentences than English and Jabberwocky (p<0.0001), and there was no difference in reaction times between English and Jabberwocky. There was no difference in self-paced reading times between forms.

These data suggest that the presence of meaning in English sentences has a positive effect on syntactic encoding quality, though it has little effect on online processing speed or the speed of syntactic evaluation. They also suggest that Nonsense sentences, interfere with more with processing than Jabberwocky. These findings support a Parallel Architecture model3 that includes separate syntactic and semantic systems that interact during encoding and retrieval in a way that could be characterized as a “semantic back-up.”

Experiment 2 (ongoing) looks to understand individual differences in reliance on this “semantic back-up” to understand the nature of the system. This experiment will attempt to correlate individuals’ difference in accuracy between English and Jabberwocky with their susceptibility to linguistic illusions, specifically their tendency to overlook agreement attraction errors in a speeded acceptability paradigm. If heavy reliance on the semantic-back up system (large difference in accuracy in Jabberwocky and English) is correlated with susceptibility to linguistic illusions, this would suggest that the semantic back-up system usage is important in syntactic comprehension more than morphological comprehension. If the opposite is found, that would suggest that the semantic back-up system is more involved in morphological comprehension. If no correlation is found, the system may influence both.

Figure 1. Accuracy of the SJT for English (ENG), Nonsense English (NON), and Jabberwocky (JAB) sentences. ENG 0.891 ±0.00701, NON 0.768 ±0.00949, JAB 0.790 ±0.00917. ENG is significantly different from JAB and NON (p=0.00062) and JAB and NON are significantly different (p=0.00249).

Figure 2. Raw reaction times by FORM. ENG 752.82 ±15.18977, NON 797.1382 ±15.29237, JAB 762.3399 ±16.23256. Eng and Jab were significantly different from Non (p<0.0001). Eng and Jab were not significantly different.
The student presented to the student: Effects of lexical repetition and syntactic structure on sentence processing
Antonio Cardoso, Donte Lowman, Leslie Gaines, & Matthew W. Lowder

Previous studies examining the effects of lexical repetition during sentence reading have revealed a dissociation between processes involved in word recognition and higher-level processes involved in sentence interpretation (e.g., Ledoux et al., 2007; Traxler et al., 2000). In (1) below, for example, Ledoux et al. showed that repetition of the target name was associated with shorter reading times in eyetracking measures that reflect early processes of lexical access regardless of whether the first noun phrase (NP1) was singular or conjoined. In contrast, repetition of the target name was associated with longer reading times in measures that reflect later processes of sentence interpretation, but only when repetition of the name was infelicitous, as in (1a).

(1a) Daniel moved the cabinet because Daniel/Robert needed…(Singular NP1)
(1b) Daniel and Amanda moved the cabinet because Daniel/Robert needed…(Conjoined NP1)

The current eyetracking experiment was designed to examine how repetition effects during sentence reading are modulated by the structure of the sentence, as previous work has demonstrated that sentence structure influences the depth at which sentential relationships are processed (e.g., Lowder & Gordon, 2012). Participants (n = 44) read sentences like those presented in (2) in which we manipulated whether a target word was new or repeated and whether it appeared as the object of the verb in the main clause of a simple sentence or embedded in a relative clause (RC).

(2a) The writer warmly greeted the devout priest yesterday afternoon…(New, Simple)
(2b) The priest warmly greeted the devout priest yesterday afternoon…(Repeated, Simple)
(2c) The writer, who warmly greeted the devout priest yesterday afternoon…(New, RC)
(2d) The priest, who warmly greeted the devout priest yesterday afternoon…(Repeated, RC)

Analysis of skipping rates on the target word (Fig.1) revealed main effects of repetition and syntactic structure such that skipping rates were higher when the target word was repeated versus new and when it was embedded in an RC versus in a simple sentence. Analysis of gaze duration in the target word (Fig.2) revealed a main effect of syntax such that there were shorter reading times when the target word was embedded in an RC versus when it appeared in a simple sentence.

Analysis of regression-path duration on the spillover region (e.g., yesterday afternoon) (Fig.3) revealed a significant main effect of repetition such that reading times were longer when the target word was repeated than when it was new. Crucially, however, there was a significant interaction such that the repetition effect emerged only in the simple sentences.

The results provide important information regarding the cognitive mechanisms involved in word recognition and sentence interpretation and how these processes interact with the structure of the sentence. The main effects observed in the skipping analysis suggest that repetition facilitates the earliest stages of word recognition, regardless of the structure of the sentence. However, a very different pattern emerges in regression-path duration on the spillover region: the infelicitous nature of the repetition results in longer processing times in the simple sentence, whereas there was no such effect in the RCs.
Figure 1. Mean skipping rates on target noun (e.g., priest) as a function of repetition and syntactic structure.

Figure 2. Mean gaze duration on target noun (e.g., priest) as a function of repetition and syntactic structure.

Figure 3. Mean regression-path duration on spillover region (e.g., yesterday afternoon) as a function of repetition and syntactic structure.

References

“Reading a book, the dog barked”: Prominence Hierarchy and the Acceptability of Dangling Modifiers

Adrian Zhou & Matthew W. Lowder

A dangling modifier is a construction where the logical subject of the modifier clause does not match the subject of the main clause. For example,

(1) Walking through the park, the trees looked beautiful.
(2) To get up early, the alarm was set at six.
(3) Upon hearing the news, the clock struck twelve.

Though normally considered ungrammatical by the standards of prescriptive grammar, dangling modifiers abound in the usage of English. Some display more salient incongruencies between the logical subjects and main subjects, and are thus more susceptible to scrutiny and are rated with varying acceptability.

The majority of existing literature on dangling modifiers approach this linguistic phenomenon from the perspective of cognitive grammar. Of most importance to the current study is Jia (2013), in which the acceptability of dangling modifiers is analyzed in terms of conceptual reference points. In cognitive grammar, a conceptual reference point is the element which the speaker or hearer uses to contextualize other elements (van Hoek, 1995). The acceptability of dangling modifiers depends heavily on the difficulty of establishing the logical subject as the conceptual reference point, and the prominence of the logical subject (critical NP) plays a crucial role in this process. According to van Hoek (1995), the prominence of an NP, determined by its position in a sentence, follows a hierarchy:

Subject > Direct Object > Oblique > Genitive Possessor

Therefore, for the following sentences in (4), the acceptability of the dangling modifiers should decrease as the prominence of the logical subject decreases.

(4a) Reading a magazine, the dog suddenly bit Mary. (Object)
(4b) Reading a magazine, Mary’s dog suddenly bit her. (Genitive + Object)
(4c) Reading a magazine, the dog suddenly barked at Mary. (Oblique)
(4d) Reading a magazine, Mary’s dog suddenly barked at her. (Genitive + Oblique)
(4e) Reading a magazine, Mary’s dog suddenly barked. (Genitive)
(4f) Reading a magazine, the dog suddenly barked. (Null)

Most of the work discussed above is purely theoretical. In contrast, there has to date been no empirical research on the acceptability of dangling modifiers that might support these theoretical frameworks. Accordingly, the aim of this study is to experimentally test the prominence hierarchy as formulated by van Hoek (1995) and Jia (2013) via acceptability judgment tasks on dangling modifiers.

We constructed 36 critical item sets like (4) and 72 filler items that all consist of a modifying clause followed by the main clause. One hundred and twenty participants recruited from Amazon Mechanical Turk were instructed to carefully read each sentence and rate its acceptability on a six-point Likert scale ranging from “1: Completely Unacceptable” to “6: Completely Acceptable”.

Mean acceptability ratings of critical items were computed across the six experimental conditions and subjected to a repeated-measures ANOVA. Data analysis is still ongoing but preliminary analysis indicates a significant main effect of the critical NP position (Figure 1), which we suspect is due to the extreme unacceptability of the Null condition.
Fig.1. Mean acceptability ratings of critical items, presented as a function of the logical subject's position.

References

Linguistic Measures of Symptomatology in Schizophrenia

Schizophrenia can be diagnosed by linguistic symptoms, such as disorganized speech. Despite this, still very little is understood about how the mental disorder can affect linguistic patterns in those diagnosed, with clinicians often relying on the criteria that ‘you will know it when you hear it.’ This research seeks to better illuminate how this symptomatology is reflected in the speech of patients with schizophrenia by analyzing how patients orally describe a picture compared to controls.

68 patients and 78 controls were asked to describe a line drawing of a beach scene as completely as possible for a period of 2 minutes. These picture descriptions allow a more direct comparison than previous research because it confines the speech elicited from participants.

The analysis of narrative structure investigates how controls and patients transition between topics in their speech. Clinicians and researchers have noted that patients tend to introduce new topics without clear transitions, thereby impeding the cohesion and coherence of their speech (Andreasen, 1986; Buck et al., 2015). This research analyzes how patients and controls use discourse markers to transition between topics and create cohesion in their descriptions. Results show that patients use significantly fewer complex transitions (e.g. they use “and” rather than markers like “because,” or positionals like “next to”) when introducing new topics ($t_{146} = 2.419$, $p=0.017$).

Secondly, the analysis of relationships investigates how subjects construct connections between objects in the picture by noting the most prominent objects and coding pairs which were mentioned together in a meaningful way (e.g. “the man is walking a dog” = a man-dog relationship). Overall, patients made fewer connections than controls did ($t_{135}=2.183$, $p=0.023$).

Finally, the analysis of completeness investigates whether patients & controls differ in how detailed their respective descriptions are through coding the major objects and their characteristics (e.g. Main object: the boy; characteristics: hair, shirt, shorts, emotional state, etc.). Results show that patients give less complete picture descriptions, as they mention fewer picture components ($t_{135} = 4.077$, $p<0.001$).

Overall, this research contributes to the body of literature elaborating on what disorganized speech looks like in schizophrenia, with the goal of bringing greater understanding of the linguistic components of this mental disorder.
References:
A large literature demonstrates that object-relative clauses (ORCs) are harder to process than subject-relative clauses (SRCs) (see Example 1 below), but with less agreement regarding where this difficulty emerges, as well as how to account for these effects.

1(a) The senator that attacked the reporter admitted the error. (SRC)
1(b) The senator that the reporter attacked admitted the error. (ORC)

A memory-based explanatory framework contends that memory demands associated with processing ORCs as compared to SRCs explain the ORC-SRC asymmetry. In contrast, experience-based accounts argue the asymmetry reflects the lower frequency of ORCs than SRCs. Additionally, memory-based accounts predict processing differences to emerge at the matrix verb, whereas experience-based accounts do not.

Several studies have found robust effects at the matrix verb (e.g., Gordon et al., 2006; King & Just, 1991), but others have not (e.g., Staub, 2010). Most experiments on RC processing have relied on self-paced reading or eyetracking during reading. In contrast, we are not aware of any previous research that has examined ORC-SRC differences in spoken language. The current visual-world eyetracking experiment was designed to test whether ORC-SRC differences would emerge at the matrix verb during spoken sentence processing. Memory-based accounts posit that the matrix verb cues the comprehender to retrieve the matrix subject (NP1) from memory; crucially, this process is predicted to be easier for SRCs than ORCs because the embedded noun (NP2) in ORCs creates interference, as it serves as the subject of the embedded verb. In contrast, experience-based accounts predict processing differences early in the RC and no differences at the matrix verb.

Participants (n = 40) listened to sentences containing ORCs and SRCs (see Example 2 below).

2(a) The cat that watched the dog in the living room jumped onto the couch. (SRC)
2(b) The cat that the dog watched in the living room jumped onto the couch. (ORC)

The visual display consisted of four pictures representing the two NPs (e.g., a cat and a dog) and two unrelated distractors (e.g., a plant and a towel). There were 40 sets of critical items and 64 filler trials not containing RCs. A written comprehension question followed each trial.

Participants were significantly less accurate for ORC (M = 82%) comprehension questions than SRCs (M = 91%), p < .001, replicating previous patterns in reading studies. Fixation plots for the two conditions are presented in Figure 1. Crucially, at the matrix verb, the preference to fixate NP1 versus NP2 was larger in the SRC condition than the ORC condition. This observation was confirmed by statistical analyses that tested the magnitude of this preference over 200-ms time bins. The difference was significant from 1400 ms to 2200 ms after onset of the matrix verb.

These results can be explained under the memory-based account; that is, retrieval of the matrix subject (i.e., NP1) was easier with less interference from NP2 in the SRC than the ORC sentences. The findings also highlight the visual-world paradigm as a useful approach for studying complex syntactic structures.
Figure 1. Fixation plots for sentences containing SRCs (left) and ORCs (right). The first vertical line (at time 0) marks the onset of the first noun (e.g., “cat”). The second vertical line represents the mean onset of the prepositional phrase. The third vertical line represents the mean onset of the matrix verb.

References

The development of vowel length as a subphonemic cue

A phonemic decision is not only derived from acoustic characteristics internal to the phoneme but also external subphonemic cues. One such subphonemic cue is vowel length. Many languages, including English, are cited as having a phonological process referred to as the Vowel Length Effect (VLE) where vowels preceding voiced sounds are longer than those preceding voiceless sounds. Countless studies have demonstrated that English-speaking adults are aware of the VLE and utilize vowel length as a subphonemic cue in determining voicing of the following obstruent. Less is known, however, about children’s developing use and sensitivity of such subphonemic cues. Recent studies show that infants are able to demonstrate sensitivity to subphonemic cues in implicit tasks, but it is unclear when the ability is adult-like due to the different nature of the adult and child tasks. Our study seeks to first confirm findings of adults’ sensitivity to vowel length preceding obstruents (Experiment 1) and second to compare child abilities by using an explicit task similar to adults (Experiment 2).

Experiment 1 (n=63) sought to confirm findings in English-speaking adults showing subphonemic use of vowel length to determine voicing. We created a sound discrimination task where adults listened to pairs of phonemically identical nonce words and were asked to indicate their level of similarity (PERFECT MATCH, NOT QUITE). The vowel length difference across the pair (0, 20, 40, 60, 80, 100ms) and the position (PRE-OBSTRUENT, NEUTRAL) were manipulated as within-subjects factors. A mixed-effect logit model showed a main effect of LENGTH \(X^2(5)=196.41, p<0.0001\), and an interaction of LENGTH and POSITION \(X^2(5)=16.45, p<0.0001\) (Fig 1). These results indicate that adults are more sensitive to vowel length differences when preceding an obstruent than showing subphonemic use.

Experiment 2 (n=40) explored 4-6-year-old’s (mean=5;5.4, range=4;4-6;11) sensitivity to vowel length as a subphonemic cue in an explicit task similar to that of adults. Children were given a sound discrimination task where phonemically identical nonce words were spoken by two robot characters and were asked to press a button indicating the level of similarity (SAME, DIFFERENT). A precursor study showed that children require larger length differences to show sensitivity, therefore the vowel length differences were doubled from the adult study. The vowel length difference was paired down to two levels (SAME: 0ms, DIFFERENT: 200ms). Position (PRE-OBSTRUENT, NEUTRAL) was tested as a between-subjects factor and vowel length difference (SAME, DIFFERENT) as a within-subjects factor. A mixed-effect logit model showed a main effect of LENGTH \(X^2(1)=40.77, p<0.0001\) (Fig 2), a significant (although much smaller) main effect of CONDITION \(X^2(1)=3.86, p=0.049\), and no interaction of LENGTH and POSITION \(X^2(1)=0.0007, p<0.978\) (Fig 3). These results indicate that children are sensitive to vowel length differences but do not show use of vowel length subphonemically.

Although previous research shows infants’ implicit sensitivity to the VLE, the current study showed that children are not able to explicitly demonstrate sensitivity from 4-6 years. Children's ability to differentiate vowel length differences indicates a phonetic sensitivity to length but failure to show increased sensitivity before an obstruent indicates that this sensitivity is purely phonetic and not subphonemic.
References

It’s widely debated in the linguistic community if studying a latent native language later in life should be considered “relearning” the language or rather “reacquiring” the language (Dahl et al., 2010). In such contexts of learning, however, language learners often have not developed total fluency in their first language (L1) before learning their second language (L2), but have an existent basis of knowledge in their L1 before deciding to pursue acquiring it as a third language (L3).

Furthermore, the debate of whether an L1 can be considered an L3 is a largely moot point; to substantiate the model of language learning in this report, Baker and Wright’s (2017) model of fluency/bilingualism on a fluid scale will be used. If this model were not used, the difference between the L1 and L2 could be viewed as skewed if the learner is not “equally fluent” in both languages (which is rarely ever the case, anyways) (Baker & Wright, 2017). Thus, with the model of bilingualism on a sliding scale, it can be acknowledged that an individual’s L1 may not be as comprehensive as their L2, and this is where we can examine the aforementioned individual learning their L1 as an L3.

In this study, the subject is considered to have relearned their L1, rather than reacquire. This is for multiple reasons, as follows: 1.) The learner never stopped using their L1 in the home, so no reacquisition was required to maintain communication with his family/conversational pattern in the home. 2.) The learner had to/currently has to learn his L1 in a different context than he has ever used before (which will be outlined in the methodology of this study). The differences in context of usage sets the stage for learning new aspects of his L1, rather than reacquiring some aspect of the L1 he has been previously exposed to. 3.) The learner’s L1/L3 is easily one of the harder languages for English speakers to acquire, especially at the advanced level of study/content level he is learning now. The learner believes his previous exposure to the L1 has aided in his overall acquisition of the L3, but believes there have been some hindrances he has had to unlearn as a native speaker of his L1, that other learners of the language would not have to deal with.

In this inquiry, it will be substantiated why the learner is considered to have relearned his L1 (Mandarin Chinese) rather than just reacquire it; additionally, the validity of the Critical Period Hypothesis (CPH) will be postulated in relation to the subject’s recontextualization of their bilingual lexicography (a theory discussed by Chen (2015) in the Australian Journal of Linguistics).
References

Comparing the Etymological Makeup of Juvenile and Preadolescent Vocabulary

Summary: This paper analyzes the change in the etymological makeup of the vocabulary of children belonging to four different age groups. Even though there is extensive research on the etymological makeup of the English language as a whole, the topic of etymology as it relates to age has seldom gone beyond mere speculation, much less entered formal scientific discussion.

Background: The vocabulary of the English language is made up of words coming from a variety of sources. Some words have been part of English ever since it branched out from Proto-Germanic, while others were borrowed later on from languages like Latin, French, and Greek. Words that refer to basic objects and concepts tend to be Germanic, whereas words for technology and science tend to be Latin and Greek borrowings.

Methods: To understand the changes in the etymological makeup of children as they get older, speech corpora of children aged 4, 6, 8, and 10 (5 children for each age group, total = 20) were collected from the CHILDES TalkBank database. Each speech transcript is collected from a different research project to ensure diversity of topics and environments. Five main etymological groups were used for the classification of words during this research: Germanic (English, Dutch, German, Norse, Swedish), Romance (Latin, French, Spanish, Italian), Greek, Mixed, and Other. The aggregate vocabulary of each age group was then put into separate databases for further analysis. With the help of the OED Text Visualizer, the transcripts were analyzed and given a precise etymological makeup.

Results: The results show an increase in lexical diversity as children get older, with children aged 4 and 6 having a stronger preference for germanic words than children aged 8 to 10, who rely more heavily on words from Latin and Greek. Overall, there is a 15% decrease of Germanic words, from 84.1% at age 4, to 69.6% at age 10. By contrast, there is a 10% increase of Romance words, from 9.1% at age 4, to 18.7% at age 10. Greek words also see an increase from 0.6% to 3.3%. The change in percentages is steady for every etymological group across all ages.

Conclusions: In keeping with the findings of previous research, age can predict the etymological makeup of English speakers, and vice versa. Germanic words are expectedly more useful to younger children than to children aged 8 to 10, who are exposed to scientific terminology at school and advanced technology at home.

Word count: 418
Verb Regularity Predicts Spanish Heritage Speakers’ Mood Morphology Production

In the context of the US, heritage speakers (HSs) of Spanish are “individuals from language minority groups who grow up exposed to a minority language [Spanish] in the home and the majority societal language [English]” (Montrul, 2016). Previous research indicates that HSs of Spanish—who are typically English-dominant—exhibit variability (e.g., inconsistent production of "target" and "non-target" Spanish forms) with grammatical properties that Spanish-dominant speakers (e.g., first-generation immigrants) produce categorically, such as subjunctive mood morphology ((1)-(2)). While previous studies have revealed evidence of variability in HSs' productive knowledge of subjunctive (e.g., Giancaspro, 2019), few have explored whether lexical factors underlie such variability.

The present study addresses these gaps by investigating the effects of verb regularity on Spanish HSs’ ability to produce "target" and "non-target" mood morphology in desiderative constructions with querer que (‘want that’) (e.g., (1)), which require subjunctive, and standard matrix clauses (e.g., (2)), which require indicative mood. By testing HSs' productive knowledge of mood with regular verbs (e.g., metaSUBJ ('put'); formed via vowel shift from e→ a) and irregular verbs (e.g., traiga ('bring'); formed via vowel shift from e→ a and a root change, e.g., from [tra-] to [traig-]), the present study reveals the degree that HSs’ variable knowledge of mood is driven by lexical, rather than/in addition to representational factors.

42 HSs (mean DELE proficiency score: 39.52/50) and 10 Spanish-dominant controls (SDCs) completed an Elicited Production (EPT) Task (and other tasks not presented here). Because the SDCs almost categorically distinguished between subjunctive and indicative moods, their data will not be discussed further. In the EPT—comprised of two conditions: ExpectedSubjunctive and ExpectedIndicative (k =10 each)—, participants were presented—via PowerPoint—with two sentence fragments and were asked to combine the sentence fragments, using a form of the verb found in the second sentence fragment. In the ExpectedSubjunctive condition, the first sentence fragment contained a desiderative construction, querer que (‘want that’), (e.g (1)), while all the first sentence fragment in the ExpectedIndicative condition contained a standard matrix clause (e.g. (2)). In both conditions, the second sentence fragment was a verb phrase with an infinitive all in caps (e.g., TENER planes originales: ‘to have original plans’). Critically, the verbs used—ten regular and ten irregular—appeared in the expected subjunctive and indicative conditions, allowing researchers to determine whether participants differentiated between indicative/subjunctive mood with each verb tested.

Results of a logistic mixed effects model revealed that HSs are more likely to produce subjunctive mood in the ExpectedSubjunctive vs. ExpectedIndicative conditions (p< .001; OR= 457.60), demonstrating sensitivity to mood distinctions in Spanish. Further analyses indicated that verb regularity modulated this sensitivity. When subjunctive was expected, HSs are more likely to produce subjunctive with irregular verbs than regular verbs (p=.002, OR= 12.06). Through presenting these regularity effects, this study demonstrates pronounced lexical effects on HS’ grammatical variability with subjunctive mood morphology, while also challenging the binary conceptualizations (e.g. incomplete/complete acquisition (Montrul, 2009)) that have previously been used to describe HSs’ mood morphology knowledge.

Word count: 495
Samples

(1) Quiero que mi próximo jefe traiga/*trae buen café para las reuniones

'Want-1ps that my next boss bring-SUBJ/bring-IND good coffee for the meetings'

(2) Un buen jefe traer/*traiga bueno café para las reuniones

'A good boss bring-IND/bring-SUBJ good coffee for the meetings'

Figure 1. Graphic representation of the Group*ExpectedMood interaction.

References:

Labovian variation in Appalachian English verbs as an Optional Pruning rule

Labovian variation, or intra-individual, non-deterministic variation within the same morphosyntactic context, has lately received attention in Distributed Morphology (DM) (Embick 2008, Johnson 2014, Nevins and Parrott 2010, Parrott 2007). One analysis is that seemingly interchangeable Vocabulary Items (phonetic realizations for functional morphemes) do not compete because they are stored in separate inventories (Parrott 2007). Another is that Vocabulary Insertion can be directed by probabilistic or optional rather than deterministic rules (Nevins 2010:1135). This paper analyzes Labovian variation in Appalachian English verbs as the result of optionally applied rules.

In the Corpus of Early Smoky Mountain English, a single speaker often seems to inflect the same root for past tense (or sometimes past participle) in two different ways within the same conversation: sometimes with the elsewhere item and sometimes without it, as in (1) below (Hall 1939).

(1a). And it [the explosion] blewed Mister Sullivan for something like a hundred yards I suppose, slapped him up a'gin the face of another cliff…
(1b). Mister Sullivan picked up a piece of steel and stove down in on the dynamite and caused the explosion and blown the men to pieces (Hall 1939).

(1a) and (1b) are two uses of the simple past tense of blow, from the same speaker and interview and with no evidence of a register shift, aspectual distinction, or phonological conditioning. This is paralleled by other variation in the corpus. For the purposes of this analysis, I assume that speakers use the elsewhere and non-elsewhere forms interchangeably. In (1a), T[+past] is realized two different ways in the context of blow, written as the Vocabulary Items (2a) and (2b) below:

(2a). T[+past] <- > -ed
(2b). T[+past] <- > -n

I propose that such variation comes from a feature that allows optional Pruning (deletion) of v in a certain list of roots, letting those roots vary in whether they show contextual allomorphy. For example, in (3a) below, the Root √BLOW is adjacent to v and v is adjacent to the past tense morpheme T[+past], yielding blowed. (3b) shows the other option, which is that v can be Pruned or deleted. This puts the Root directly adjacent to T[+past] and allows a T[+past] other than the elsewhere item, yielding blown.

(3a) √BLOW— v realized as Ø, v realized as Ø—T[+past]
(3b) √BLOW— T[+past]

(4) below shows the Optional Pruning Rule. P indicates probability of deletion of v.

(4) [v] (0 < P < 1) → Ø / √Root— -- T[+past]

This analysis explains the presence of the elsewhere item among the options for variable Vocabulary Insertion. I also discuss evidence that the rule seems active only in the context of certain roots, and how its application relates to that of Readjustment Rules.

Phonology often incorporates probabilistic rules, but syntax and morphology tend to neglect them as a possibility. This paper uses probabilistic rules associated with certain roots to explain a morphological phenomenon, and future research could try the same analysis on others.
References

Johnson, Gregory, II. 2014. Doctoral dissertation. Restructuring and infinitives: the view from Appalachia. Michigan State University. https://d1wqtxts1xzle7.cloudfront.net/48730214/Johnson_2014_Diss.pdf?1473525492=&response-content-disposition=inline%3B+filename%3DRESTRUCTURING_AND_INFINITIVES_THE_VIEW_F.pdf&Expires=1607988254&Signature=Pl~~Yt-J5l1lIUSH79YT-0YFc59zQvxpGm8p-NVGAzpdcW0f4bF81BXSiTFjjgG4RsDJRS03RlHGAZNjJhjBqBSWsnll8Pfbdz2HK1TF0k1-R1gjEbDgjZ- MIQk6Nv2fX4FGtQlbrxFc09VOfkSlhhky0ladeKYPFRaaphuQc9VnIdLaJsq6zn-i-orc0v48IBwu5961PQ9eqc5YLzX4lejK48qIS6qz3zLRFvguzMb6CNGwGQo-rZfrQXGt0g2ELysDtlGfkYQLAI8cSBw4Gtq4UtkpPL4igj4vCj-D4qRHvMp77NSPoXRGEmYQnPeyPuyBic8prMuZ7fquYKA-DChA__&Key-Pair-Id=APKAJLOHF5GGSRLBV4ZA

Vratničći: A descriptive grammar

This paper describes certain grammatical features of Vratničći (North Macedonia), a South Slavic language related to Macedonian and Bosnian/Croatian/Serbian (BCS). Vratničći is spoken by residents of and migrants from the village of Vratnica, situated in northwestern North Macedonia in the Šar Planina mountain range. Vratničći shares with BCS the pervasive use of verbal aspect; in particular, it distinguishes between perfective and imperfective verbs in the present and past tenses. Ružić (1943) describes the aspectual “systems” of BCS: “To an imperfective verb is opposed a perfective one, identical in meaning except for the aspectual difference. As a result, verbs come in systems of mutually related pairs” (15). This systematic separation by aspect and then again by tense results in four distinct permutations of the indicative verb, each recognizable by its morphology and usage.

These four permutations of tense and aspect which I observe are: present imperfective, present perfective, past imperfective, and past perfective. With respect to morphology, the present and past tenses are recognizable by their respective conjugations. The imperfective and perfective aspects, on the other hand, are recognizable in the verb stem itself. For example, the verb ‘I buy’ is expressed in Vratničći as both kupuam, using the imperfective stem containing [ua], and kupim, using the perfective stem containing [i].

1. svaći dan kup-ua-m cveće
 every day buy-IPFV-PRS.1SG flowers
 ‘I buy flowers every day.’

The above gloss illustrates the division of kupuam into three parts—lexical stem, aspect infix, and conjugation—as well as one usage of the verb to describe a habitual action in the present.

Not every permutation of tense and aspect in Vratničći functions so simply as in (1):

2. [da.li] da kup-i-m cveće za jutre
 [Q] COMP buy-PFV-PRS.1SG flowers for tomorrow
 ‘Should I buy flowers for tomorrow?’

Above, the present perfective appears in a volitional question with the complementizer da. In fact, I have never yet observed the present perfective on its own, without da, suggesting that its usage in Vratničći is specialized.

3. kup-ua-v cveće i gu vid-o-v Jelen-u
 buy-IPFV-PST.1SG flowers and 3SG.F.ACC see-PFV-PST.1SG Jelena-ACC
 ‘I was buying flowers when I saw Jelena.’

In (3), the past imperfective and perfective are used in conjunction to signal that one, the perfective, interrupts the other, the imperfective. To say *kupuav cveće alone is ungrammatical: either a clarifying temporal adverb or a second, perfective verb is necessary.

In summary, the systems of verbal aspect in Vratničći are complex and understudied with respect to both morphology and syntax. The number of native speakers of Vratničći is dwindling alongside the population of Vratnica itself, and my fellow heritage speakers often express confusion about the language’s seemingly chimeraical verbs. By eliciting, describing, and analyzing native Vratničići, I aim to illuminate the features of the language—including verbal aspect, modal verbs, gender, and case—with which heritage speakers struggle most. My object is not only to preserve the language of my mother and father in writing, but to help and encourage my own generation to preserve it in speech.
Tables

Verb system: *kupuam/kupim* ‘I buy’

<table>
<thead>
<tr>
<th></th>
<th>Present</th>
<th></th>
<th>Past</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Imperfective</td>
<td>Perfective</td>
<td>Imperfective</td>
<td>Perfective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>P</td>
<td>S</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>kupuam</td>
<td>kupamo</td>
<td>kupim</td>
<td>kupimo</td>
<td>kupuav</td>
<td>kupuavmo</td>
<td>kupiv</td>
</tr>
<tr>
<td>2</td>
<td>kupuaš</td>
<td>kupuate</td>
<td>kupiš</td>
<td>kupite</td>
<td>kupuaše</td>
<td>kupuavte</td>
<td>kapi</td>
</tr>
<tr>
<td>3</td>
<td>kupua</td>
<td>kupuav</td>
<td>kupi</td>
<td>kupiv</td>
<td>kupuaše</td>
<td>kupuaa</td>
<td>kapi</td>
</tr>
</tbody>
</table>

References

“Jar Jar is the Key to All This”: The Use of Ethnicity, Dialect, and Othering in Star Wars Episode I – The Phantom Menace

This paper draws upon previous work on linguistic minstrelsy in Hollywood and accented speech in Disney films and applies these concepts to Star Wars Episode I – The Phantom Menace (Bucholtz & Lopez 2011; Lippi-Green 2012). Specifically, this paper investigates the linguistic performance of Jar Jar Binks and how this portrayal perpetuates harmful ethnic stereotypes. I detail how examples of Jar Jar’s speech align with features commonly found in Jamaican Creole, Jamaican English, and African American Vernacular English—all dialects associated heavily with blackness. Some of these features include TH-stopping, /v/ ~ /b/ variation, reduplication, habitual be, g-dropping, and code-switching (Lopez & Hinrichs 2017; Devonish 2009; Gooden 2003; Rickford 1986; Fought 2006). I argue that the use of these features in Jar Jar’s speech is an example of linguistic minstrelsy as opposed to a true representation of the aforementioned dialects. This is exemplified by the ways in which Jar Jar’s speech diverges from common dialectal features, such as his addition of the suffix -sa to the ends of certain words and in his pronunciation of the /i/ vowel in SPEAK as /ε/. In fact, Jar Jar’s speech patterns often mimic a pidgin or even baby talk, resulting in a characterization of stupidity or laziness. This characterization plays into negative stereotypes associated with speakers of Jamaican dialects and AAVE. I situate this analysis in terms of all nonstandard dialects in The Phantom Menace, looking broadly at the use of standard versus nonstandard speech in human and alien characters throughout the film. My analyses suggest that the film overwhelmingly employs nonstandard dialects in alien characters as a tool to indicate otherness, a concept often associated with nonstandard speech in film and beyond (Lippi-Green 2012). Ultimately, I illustrate and discuss the harmful impacts of using ethnic dialects to this end, both in Jar Jar’s character and on a wider scale, echoing arguments made by Lippi-Green (2012) and others.
America or America? A study of topic-based shifting in a US expat in London.

Research has shown that individuals who change geographic location for extended periods of time change and adapt their speech because of second dialect acquisition (Nycz 2015). Speakers are also prone to topic-based shifting between dialects, their original dialect (D1) and their nonnative dialect (D2) (e.g., Walker 2019). In this paper I explore how a single migrant speaker changes their pronunciation of a particular word depending on how she is positioning herself relative to both locations (Nycz 2018).

This study examines an interview with a 41, female speaker who was born in Ohio, lived in America for 31 years, but moved, and currently lives (at the time of recording), in London, England. For the purpose of this research, I will refer to her as Alex. The recording is part of the Transatlantic Corpus (Walker 2014). The recording is approximately 40 minutes long and covers topics such as American and English politics, American football, English soccer, the speaker’s experience in both America and England, and how their own individual language and speech has changed since moving.

In this paper, I specifically focus on Alex’s pronunciation of the first vowel in the word “America(n)”. While almost all studies looking at salient pronunciation differences focus on stressed vowels (Walker 2019), the vowel of interest here is a schwa in both American and English dialects. However, the realization of schwa differs slightly, but audibly across dialects, including in this iconic word which she says a total of 39 times throughout the interview.

Sometimes when Alex says “America(n),” she is including herself as an American while talking about American topics (1), while other times she appears to align herself as a British speaker and positions herself outside of the US, especially when talking about non-American topics (2). Critically, the way she pronounces the first schwa in “America(n)” appears to change when she says it in ways that reflect her positioning: Her “America(n)” sounds more American in (1), and more British in (2).

1. “If you're American you're gonna say they're gonna take their ball and they're gonna go home” (275.15 seconds in file 2)
2. “I have always kinda felt a kinship with British ways of thinking with the approach to life here suits me much better than America did” (354.83 seconds in file 1)

I am in the process of systematically auditorily coding the tokens as categorically British or American sounding, and of acoustically measuring F1 and F2 of the midpoint of each vowel in Praat. I am interested whether her pronunciation of schwa in these words aligns with the broader topic of conversation as already defined in the Transatlantic corpus, or whether understanding the changes in her pronunciation is better understood by a close reading of the stance she is taken in a given moment and how she views herself (Kiesling 2009).
Captioning chefs: Examining ideologies of intelligibility through selective subtitles in *Diners, Drive-Ins and Dives*

Subtitles, as opposed to closed captions, are used for the purposes of translation or clarification of speech that is deemed difficult to understand for audiences who don’t typically use closed captions (Lueck 2011). Therefore, subtitles reveal assumptions about, and possibly contribute to, perceptions of who is considered intelligible. In the present study, we are examining the use of selective subtitles in the Food Network television program *Diners, Drive-Ins and Dives* (DDD). Each episode follows Guy Fieri as he visits three different restaurants, typically across the U.S. During each restaurant encounter, Fieri conducts informal interviews with a featured chef. While the interviews are almost always conducted primarily in English, the chefs come from a diverse range of linguistic backgrounds.

To assess for sociolinguistic factors that may inform the choice to subtitle an utterance, we are systematically watching episodes of DDD and documenting relevant demographic information about each featured chef, including the chef’s presumed native language (L1), regional native English dialect, and hometown. The presence of selective subtitles is also recorded.

To date, we have looked at 21 episodes, for a total of 63 restaurant encounters. Subtitling occurs in 11/63 encounters. In one of these cases, the subtitles only appear when the recorded audio is coming through a phone, which producers may have determined would impair intelligibility. In another case, the show subtitles Fieri for comedic effect; a chef comments on his own L2-accent, and Fieri reassures him with an assertion (and supporting subtitles) that he is the one who needs to be captioned. Another 3 of these subtitled encounters occur in a special event with restaurant encounters in Barcelona, Spain rather than in the U.S., and the show uses subtitles both to translate Spanish, and for Peninsular-Spanish-accented-English. For the remaining encounters where subtitling occurs, our preliminary analysis shows that all 6 chefs are exclusively presumed L2 speakers of English. Specifically, 2/10 L1-Latin American Spanish speakers, as well as 4/9 L1 speakers of another non-English language, were subtitled.

While we are still in the initial stages of data collection, these early patterns suggest interesting connections between selective subtitling in DDD and ideologies about intelligibility (Lueck 2011; Lippi-Green 2012). While the show includes other moments where intelligibility of English could be compromised (talking while eating/laughing, mumbling, regional dialects, etc.), it assumes that the intelligibility threshold is only ever crossed by L2-English. At the same time, the show never entirely subtitles a speaker; subtitling can actually be quite sparse, and alternative clarifying techniques like repetition and verbal translation are often used. This suggests a possible awareness of the ideological implications selective subtitling can make, and a subsequent stance that it is certain L2-English *utterances*, not L2-English *speakers*, that are being categorized as unintelligible. Finally, there is some evidence that the show assumes its U.S. audience is more familiar with L1-Latin American Spanish speakers; these speakers are less frequently subtitled compared to other L1 groups, and there are instances where Spanish is not translated into English.
Going Down Down: Use of “punk” accent features across pop punk and pop genre albums

In this study, we investigate the effects of genre-specific phonology of pop-punk by looking at the rates of /d/ affrication and /ay/ monophthongization in the songs of popular pop-punk bands Fall Out Boy and All Time Low. These two bands are selected because they each began as a strongly pop-punk band, but each also have produced a later album in the pop genre. Both Fall Out Boy and All Time Low received criticism for their shift to pop music and perceived “selling out”; Fall Out Boy was labelled a “pop band that always hid in plain sight” (Ryan, 2018), while All Time Low’s fans regarded the album to be a “mediocre-money-grab pop record” despite being popular with critics (Ankney, 2019). In this paper, we compare the rates of pop-punk features between pop-punk and pop albums for each of these two bands.

We analyze two linguistic features that have been identified in previous work as indexing a “pop-punk” accent: /ay/ monophthongization and /d/ affrication (Trudgill, 1997; Nosowitz, 2015). We predict that rates of /d/ affrication and /ay/ monophthongization will be higher in the pop-punk albums and lower in the pop albums, as each band aligns their singing accent with the salient features of each respective genre. We additionally consider the linguistic contexts of each of these variables, to account for the effects of stress on /d/ affrication (Buizza and Plug, 2012) and following phonological effect for /ay/ monophthongization (Fridland, 2003), to see if the effect of genre applies across linguistic factors in sung speech.

The first 100 tokens of each variable’s occurrence across five albums were analyzed through Praat to determine when each variant occurred. Instances of /d/ affrication was determined by identifying if the /d/ plosive was released with a following burst on the spectrogram, and instances of /ay/ monophthongization occurring were determined by measuring the change in F2; tokens with less than 500hz difference were coded as monophthongal.

We find that the proportion of /d/ affrication decreased across both linguistic environments when the performance style of artists changed from pop-punk to pop (from 0.63 overall to 0.505), suggesting that /d/ affrication might indeed be an indexical feature of the pop-punk singing style. We also find that /ay/ monophthongization did not appear to be an indexical feature of pop-punk phonology, as the overall proportion of monophthongized /ay/ actually increases in the pop albums (from 0.485 to 0.61, overall). One possibility is that /ay/ monophthongization occurs generally across all singing styles, due to the increased “singability” of a monophthongized token (Morrissey, 2008).

Our results suggest that /d/ affrication is indeed a feature of pop-punk phonology, that artists use to signal their participation in the pop-punk genre. Contrary to previous work, we find that /ay/ monophthongization does not appear to be a pop-punk feature specifically, but rather is a feature of general sung speech.
References

Give It to Me Straight: The Implications of the HONESTY IS STRAIGHT Metaphor on Perceptions of Sexuality

The word *straight* to reference heterosexuality was first reported by G.W. Henry in his 1948 book *Sex Variants: A Study of Homosexual Patterns*. The designation was used by members of the gay community to refer to a gay man who enters into a heteronormative relationship. Despite it’s gay lineage, the term is now ubiquitous and used as a self-identifier for heterosexual people; if the word *gay* can be described as “as a non-clinical designator of homosexuals” (McConnell-Ginet, 2001, 140), *straight* appears to be a non-clinical designator of heterosexuals. Given other metaphorical uses of the word *straight*, including the HONESTY IS STRAIGHT metaphor, I explore the implications of this term’s associations on perceptions of non-straight sexualities, and argue that it is because of said associations that straight people have uncritically adopted a term created for them by outgroup members.

In simple terms a metaphor is a comparison between two unlike concepts: a more concrete source concept and a more abstract target concept. Key to metaphors are entailments, or deductions made based on the metaphor in question — so deemed the metaphoric transfer strategy (Landau et al., 2010; Lakoff & Johnson, 1980). The cognitive impacts of this strategy have been demonstrated in a multitude of studies, including within-lab experiments (Meier & Dionne, 2009). If perceptions of people can be shaped by metaphors that are temporarily applied to them, it seems quite likely that perceptions of people are even more strongly shaped by metaphorical language that is used to mark stable aspects of their identity.

Straight’s literal, primary meaning has been described as “not crooked; free from curvature, bending or angularity” (OED, 2019) and similarly “free from curves, bends, angles, or irregularities,” (Merriam-Webster, 2019). Almost all dictionaries include secondary, metaphorical meanings of straight like “honest”, “proper”, “conventional”, “respectable”, and “socially acceptable”. Moreover, in a survey of five publications, including a mix of publications targeting LGBTQ audiences, I found ample examples of the use of *straight* to mean honest, often in phrases like *straight shooter*, and *straight talk*.

Critically, and in line with the metaphoric-transfer strategy, if straight is “honest”, the implication is that non-straight is “dishonest”. This converse relationship is explicitly seen in the British colloquial use of the word *bent* to describe someone that is gay, while the term is also used to denote someone who is corrupt, and in the colloquial phrase “to bend the truth”, to convey lying.

While labels given by outgroups are often seen as slurs, and only used by ingroup members after reclamation (McConnell-Ginet, 2001, 139-142), *straight* has been uncontroversially adopted as a self-identifier by heterosexuals (compare other terms like *breeders*). Effective metaphors work because they make sense to us (Lakoff & Johnson, 1980), and the success of *straight* reflects a shared, uncritical understanding that heterosexuality is conventional, respectable, proper and honest. But not only does this validate overtly positive perceptions of heterosexuality, it garners subsequently negative perceptions of the LGBT community.
Works Cited
Media Isn’t Your Friend: Ethnicity and Language Subordination in the television show *Friends*

As a societal institution, the media industry has been shown to communicate both explicitly stated and implicitly held cultural ideologies about the intersection between language and social factors, such as race, ethnicity, and social class (Craft et al 2020). In this paper, I use the language subordination model (Lippi-Green 2012) as a lens to examine how the popular 1990s sitcom *Friends* perpetuates standard language ideologies. My study looks at instances where the content depicted in this show faithfully represents those biases and how they are written directly (whether intentionally or unintentionally) into the script, resulting from the intuition on which screenwriters are taught to rely (Bednarek 2018). My analyses contrasts the identities of two different African American characters from the show, Rhonda (season 4, episode 11) and Charlie Wheeler (season 9, episode 20 – season 10, episode 6). This analysis reveals two phenomena that happen in tangent with each other; one character’s speech is characterized by AAE (African American English) while the other’s is characterized by MUSE (Mainstream United States English), and one character is shown as trivial, marginal, and in a service position while the other is shown as a positive example of a conformer to the standard language who fits in with friends, has a profitable and influential career, and is liked and respected. Charlie Wheeler’s speech matches the MUSE speech patterns of her white co-characters and she is established as a young, fun, smart women who is just as respected and popular as those white co-characters as well. In contrast, Rhonda’s speech is noticeably marked by AAE linguistic features, such as the absence of 3rd person singular -s marking, copula absence, r-vocalization, th-stopping, loss of single vowel consonants, and vowel nasalization. As she is shown as a loud service worker who makes social situations palpably uncomfortable, juxtaposing Rhonda’s character profile and Charlie’s character profile illustrates the presence of standard language ideologies at play in this series.

Not only does this show’s content act as a historical indicator (via implicit biases) of the way society and social institutions were functioning during these decades, but, as a product of the media industry, it plays an influential role in how individuals draw conclusions about social factors. I argue that the way *Friends* depicts Black characters contributes to ‘Perceived Realism’ (Heaton 2018) which is a force at play where media depictions are accepted as an objective representation of how the world really functions. As viewers form social opinions based on media content, those opinions become prevalent throughout society, feeding back into to the media industry as it depicts society, and continuing this cycle of social information and circulating ideologies (Cargile et al 1994). Furthermore, the effects of these ideologies are not only relevant to the past but remain influential to younger generations, as it continues to circulate widely across streaming services. My analysis of *Friends* details language ideologies that remain prominent from the 1990s to today, uncovering how this media both explicitly and implicitly communicates ideologies about African American English.
Works Cited:

Linguistic profiling adversely affects many ethnic communities. Hearers’ perceptions of speakers’ accents play a large role in the speakers’ perceived credibility and can lead to racial discrimination (Baugh 2016, Rubin 1992). As much of the previous research regarding profiling has focused on the African American community, this study extends this line of research to a new ethnic group, looking at Indian Americans. In order to study the extent of discrimination against Indian Americans across various racial and ethnic populations, I examine survey participants’ perceptions of speakers based on the speakers' accents.

The research focuses specifically on Indian English (IE) and Standard American English (SAE) accents; the linguistic variable is the participants’ perceptions, and the social variable is the participants’ own race/ethnicity. Participants are all English-speaking adults who were recruited for the survey through social media. The survey consists of eight voice recordings covering four topics: weather, politics, mathematics, and technology. Each topic includes an IE and SAE recording, as well as three answer options: "smart" and "reliable" are both rated on a 4-point Likert scale, and "could not understand" is the last answer choice. The last survey question records the race/ethnicity of the participants. By comparing hearers’ perceptions of the voice recordings to participants’ race/ethnicity, the study will show how a person’s racial/ethnic background influences their perception of IE and SAE speakers. The survey is ongoing with findings forthcoming.

A pilot study was conducted to compare English speakers’ general perceptions of IE and SAE using three topics: politics, mathematics, and technology. Results are displayed below. Overall, “smart” was the highest response across the three experimental conditions for IE speakers. However, the highest response varied each time for SAE speakers. The data implies that SAE speakers were rated based on speech content, whereas accent mattered more in the perception of IE speakers. These suggestive results inspired a new study that will delve deeper into the specific variables “smart” and “reliable.” The new study will show how participants of different races/ethnicities perceive IE speakers across all topics. This more focused study with a larger participant pool will substantiate the finding that IE speakers are judged on accent rather than topic and will establish which races/ethnicities of participants are most likely to make these judgements. The new study opens a pathway to address the larger social issues of how IE speakers can be linguistically profiled by race.

Pilot Study Results

<table>
<thead>
<tr>
<th>Topic</th>
<th>IE Condition</th>
<th>SAE Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Politics</td>
<td>Top</td>
<td>Top</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Middle</td>
<td>Middle</td>
</tr>
<tr>
<td>Technology</td>
<td>Bottom</td>
<td>Bottom</td>
</tr>
</tbody>
</table>

The intersection of race, place, and language change in post-Katrina New Orleans

New Orleans, Louisiana is currently undergoing a major demographic shift as a result of Hurricane Katrina in 2005. In such contexts of instability and population mobility, issues relating to race- and place-based identity may become especially salient for locals (Modan 2007; Becker 2014; Newlin-Lukowicz 2015)—and of course, language practices may become unsettled too, as a result of these same processes. In this paper, I examine nonrhoticity and copula absence in contemporary New Orleans English, focusing in particular on ethnic identification of speakers and on their location within Greater New Orleans -- as city-dwellers or suburbanites. I note the ways that trajectories of language change across the varied communities within and outside the city intersect with their place- and race-based alignments, which have also shifted over time. I connect these findings with historical developments in the city.