The Effect of Storm Water Retention Ponds on Leaf Decomposition

Shelby R. Burks
Advisor: Randy Chambers

NSF Research Experience for Undergraduates
The College of William and Mary
Outline

- The Basics
- Measuring Leaf Breakdown
- Statistics and Thoughts
The Background: Why Decomposition?

- Decomposition is a functional measure of ecological integrity (Gessner and Chauvet 2002).
- Lightly impacted streams had leaf processing rates of a hard-leaf species more than 50% slower than in "intact" streams, fauna diversity was not lowered (Moulton and Magalhães 2003).
- Physical abrasion and microbial activity govern mass loss in developed streams, whereas processing was governed mainly by microbial and invertebrate activity in forested streams (Bird and Kaushik 1992).
Background: Decomposition

- Two possible sources of energy in freshwater streams:
 - Instream: photosynthesis by algae, moss, and higher aquatic plants
 - Imported (allochthonous): Autumn leaf fall
- Leaves are broken down by microbial activity, shredders, and physical fragmentation.
Questions

- Do storm water retention ponds affect leaf decomposition?
- If yes, what accounts for that change?
- What does decomposition tell us about ecosystem integrity?
Research Sites

Mulberry Place
- Diverse riparian zone (trees, low vegetation)
- Lightly Developed
- Narrow Floodplain
- "Soft" substrate
Research Sites

Ironbound Village
- Diverse riparian zone (trees, low vegetation)
- Urbanized
- Wide floodplain
- “Course” substrate
Research Sites

William and Mary Campus
- Riparian zone rich in trees
- Highly developed area
- Diverse substrate
Experimental Design

- 50 gram mixed leaf litter bags
- Sets of five **upstream** and **downstream** of retention ponds
- Collect after 2 and 5 weeks.
Experimental Design

- Dry leaf litter for re-weighing
- Survey Invertebrates
- Ash leaf litter for AFDM
Results: Summary

- **Decay Rates**
 - Upstream: -3.91 g/week
 - Downstream: -2.12 g/week
 - Significant: NO

- **Invertebrate Survey**
 - Upstream: 10583
 - Downstream: 1380
 - Significant: NO
 - Invertebrates correlate with decay (overall)
Results: All Ponds

Decomposition Upstream Retention Ponds

\[y = -3.9126x + 42.634 \]

\[R^2 = 0.6421 \]

Leaf Litter Mass (grams)

Week
Results: All Ponds

Decomposition Downstream Retention Ponds

\[y = -2.1174x + 36.77 \]
\[R^2 = 0.3582 \]

Leaf Litter Mass (grams)

-2.3494

Week

n=25
Results: Decay Significance

*Paired two sample t-test comparing leaf masses after 5 weeks, $p = 0.1085$
Results: Invertebrates

<table>
<thead>
<tr>
<th>Site</th>
<th>Upstream</th>
<th>Downstream</th>
<th>*Paired two sample t-test, p=0.197258</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ironbound Village</td>
<td>93</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>Mulberry Place</td>
<td>294</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>Crimdell</td>
<td>63</td>
<td>329</td>
<td></td>
</tr>
<tr>
<td>Yates</td>
<td>9785</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>Campus</td>
<td>348</td>
<td>394</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10583</td>
<td>1380*</td>
<td></td>
</tr>
</tbody>
</table>
Results: William and Mary (Yates)

Upstream Leaf Litter Breakdown at W&M 2

\[y = -0.1495x + 3.7677 \]
\[R^2 = 0.8809 \]

Downstream Leaf Litter Breakdown at W&M 2

\[y = -0.0484x + 3.5513 \]
\[R^2 = 0.4582 \]

9785 invertebrates
*Higher decay

223 invertebrates
Lower Decay
Upstream Leaf Litter Breakdown at Ironbound Village

\[y = -0.3288x + 4.0342 \]

\[R^2 = 0.9 \]

93 invertebrates
*Higher decay

Downstream Leaf Litter Breakdown at Ironbound Village

\[y = -0.0719x + 3.6595 \]

\[R^2 = 0.8839 \]

224 invertebrates
Lower Decay
Discussion

- Do storm water retention ponds affect leaf decomposition?
 - On average no, but it varies with basins.

- If yes, what accounts for that change?
 - Changes in Invertebrate Communities
 - Storm Water Discharge
Conclusion

- What does decomposition tell us about ecosystem integrity?
 - Difficult to say – many factors
 - Baseline data is important
 - Improve Design
Acknowledgments

- The National Science Foundation
- The College of William and Mary
- Randy Chambers
- Jessica Sitnik
- REU 2006