A Hydrological and Sedimentological Study of the Pointe at Jamestown Retention Pond

Brent V Aigler, Colby College
Advisor: Greg Hancock, Geology

Lauren Hallett, Emily Hathaway, Cristina Lopez
Overview

- Impact of urbanization
- Retention Ponds: Structure and Function
- Hydrology of Pointe at Jamestown
- Suspended Sediment at Pointe
IMPACT: Urbanization

- Higher discharge
- Lower Baseflow
SOLUTION: Retention Ponds!

Figure 6: Altered Hydrograph in Response to Urbanization (Schueler, 1987)
Regulations:

- **State of Virginia**: 2-YR Post-Development flow cannot exceed 2-YR Pre-Development flow

- **James City County, VA**: 1-YR, 24-HR Storm rainfall must be retained for at least 24 hrs. in pond
Research Questions

1. Is Pointe at Jamestown in compliance with state and county regulations?

2. Does Pointe perform as specified in design plans?

3. Does Pointe perform according to model design software?

4. How effectively does the Pointe retention pond capture suspended sediment from inflow?
Study Site: The Pointe at Jamestown

Mulberry
Ironbound
W&M
POINTE
Kensington
METHODS

- Datalogger (pond elevation)
- Rain gage (rainfall)
- Conversion to Inflow, Outflow, Storage (= Volume in – Volume out)

Lopez (2006)
Data Analysis
Results: Does Pointe Pass?

Peak Flow Standard
2006 Storm Data

Duration Standard
2006 Storm Data
Field Data vs. Model Data

Pointe at Jamestown: Inflow

- **Model > Field**
- **Field > Model**

Pointe at Jamestown: Outflow

- **Model > Field**
- **Field > Model**

Pointe at Jamestown: Centroid-Centroid Lag

- **Model > Field**
- **Field > Model**

\[R^2 = 0.533 \]
\[p-value = 0.0105 \]

\[R^2 = 0.753 \]
\[p-value = 0.0326 \]

\[R^2 = 0.6423 \]
\[p-value = 0.000109 \]

\[p-value = 0.00109 \]
Conclusions

- Pointe at Jamestown did not meet Virginia’s 2-yr peak outflow standard.

- Pointe does not hold water for at least 24 hours.

- Modeling software underpredicts inflow and outflow to and from the pond.

- Modeling software underpredicts inflow-outflow lag times.
Part II: Suspended Sediment

Question: How effectively does Pointe at Jamestown capture suspended sediment from inflow?

Retention Pond Inlet

Lopez (2006)
Methods and Data Collection

ISCO Automated Sampler

Inflow

Lopez (2006)

Outflow

Me (I’m not really mad)

James City County (2005)
Sediment and Discharge Throughout a Storm

Pointe Inflow: Day 186

- Discharge (cfs)
- Concentration (mg/L)

Graph showing discharge and concentration over time.
Results

Mass Flux: Pointe at Jamestown

Mass deposited = \frac{100 \times (\text{mass in} - \text{mass out})}{\text{mass in}}

<table>
<thead>
<tr>
<th>Storm Date (Day)</th>
<th>Inflow</th>
<th>Outflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 Jun (174)</td>
<td>93%</td>
<td>51%</td>
</tr>
<tr>
<td>27 Jun (178)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 July (186)</td>
<td>83%</td>
<td></td>
</tr>
<tr>
<td>Sum of Events</td>
<td>91%</td>
<td></td>
</tr>
</tbody>
</table>
Why does Removal Efficiency Increase with Storm Size?

Higher Discharge: More sediment brought to pond.

Higher Velocity: bigger grains are transported.

LARGER STORMS BRING IN MORE, COARSER SEDIMENT
Why does Grain Size Matter in Removal Efficiency?

Retention Pond Cross-Section

Larger grains settle from suspension more quickly (settling velocity).
Conclusions

- Most suspended sediment (~91%) deposited before outflow.
- Larger storms have a greater removal efficiency.
Further Considerations

- Pointe at Jamestown not completed.
- Wolman (1967): Construction sediment concentrations greater than post-construction.
- Submit data summary to Homeowners Association

Lopez (2006)
When entering a dangerous rainstorm, ALWAYS wear protection.