Technical Report WM-CS-2015-01

College of
William & Mary
Department of Computer Science

WM-CS-2015-01

Towards Real-Time Detection and Tracking of Blob-Filaments in Fusion Plasma
Big Data

Lingfei Wu, Kesheng Wu, Alex Sim, Michael Churchill,
Jong Y. Choi, Andreas Stathopoulos, CS Chang, and Scott Klasky

May 4, 2015

Towards Real-Time Detection and Tracking of
Blob-Filaments in Fusion Plasma Big Data

Lingfei Wu, Kesheng Wu, Alex Sim, Michael Churchill,
Jong Y. Choi, Andreas Stathopoulos, CS Chang, and Scott Klasky

Abstract—Magnetic fusion could provide an inexhaustible, clean, and safe solution to the global energy needs. The success of
magnetically-confined fusion reactors demands steady-state plasma confinement which is challenged by the blob-filaments driven by
the edge turbulence. Real-time analysis can be used to monitor the progress of fusion experiments and prevent catastrophic events.
However, terabytes of data are generated over short time periods in fusion experiments. Timely access to and analyzing this amount of
data demands properly responding to extreme scale computing and big data challenges. In this paper, we apply outlier detection
techniques to effectively tackle the fusion blob detection problem on extremely large parallel machines. We present a real-time region
outlier detection algorithm to efficiently find blobs in fusion experiments and simulations. In addition, we propose an efficient scheme to
track the movement of region outliers over time. We have implemented our algorithms with hybrid MPI/OpenMP and demonstrated the
accuracy and efficiency of the proposed blob detection and tracking methods with a set of data from the XGC1 fusion simulation code.
Our tests illustrate that we can achieve linear time speedup and complete blob detection in two or three milliseconds using Edison, a

Cray XC30 system at NERSC.

Index Terms—Big data analytics, outlier detection, region outlier, blob detection, blob tracking, fusion plasma.

1 INTRODUCTION

A S “big data” has increasing influence on our daily life
and research activities, it poses significant challenges
on various scientific research areas. To extract knowledge
from the massive amounts of data available, data mining
techniques are frequently used. Many traditional data min-
ing techniques attempt to find patterns occurring frequently
in the data. In this work, we explore outlier detection ap-
proaches to discover patterns occurring infrequently. Outlier
detection is employed in a variety of applications such as
fraud detection, time-series monitoring, medical care, and
public security [1] [2]. A well-known definition of “outlier”
is given in [2]: “a data object that deviates significantly from
the rest of the objects, as if it were generated by a different
mechanism”. In some cases, outliers are treated as errors or
noise to be eliminated; while in many other cases, outliers
can lead to the discovery of important information in the
data.

With increased global energy needs, magnetic fusion
could be a viable future energy that is inexhaustible, clean,
and safe. The success of magnetically-confined fusion reac-
tors, like the International Thermonuclear Experimental Re-
actor (ITER) [3], demand steady-state plasma confinement
which is challenged by the blob-filaments driven by the

o L. Wuand A. Stathopoulos are with the Department of Computer Science,
College of William and Mary, Williamsburg, VA, 23185.
E-mail: {Ifwu,andreas}@cs.wm.edu

o K. Wu and A. Sim are with Lawrence Berkeley National laboratory,
Berkeley, CA, 94720.
E-mail: {kwu,ASim}@Ibl.gov

o M. Churchill and C. Chang are with Princeton Plasma Physics Labora-
tory, Princeton, NJ, 08536.
E-mail: rmchurch@mit.edu, cschang@pppl.gov

o] Choiand S. Klasky are with Oak Ridge National Laboratory, Oak Ridge,
TN, 37831.
E-mail: {choij klasky }@ornl.gov

edge turbulence. A blob-filament (or blob) is a magnetic-
field-aligned plasma structure that appears near the edge
of the confined plasma, and has significantly higher density
and temperature than the surrounding plasma [4]. Blobs are
particularly important to study since they convect filaments
of plasma outwards towards the containment wall, which
results in substantial heat loss, degradation of the magnetic
confinement, and erosion of the containment wall. By identi-
fying and tracking these blob-filaments from fusion plasma
data streams, physicists can improve their understanding of
the dynamics and interactions of such coherent structures
(blobs) with edge turbulence.

During the last decade, there has been a significantly in-
creasing need for knowledge discovery in spatial-temporal
databases. Classical multi-dimensional outlier detection
techniques are designed to detect global outliers. However,
these techniques do not distinguish between non-spatial
attributes and spatial attributes and do not consider apriori
information about the statistical distribution of the data [5].
Since spatial-temporal data types have unique characteris-
tics and their relations are more complicated than ordinary
data, dedicated outlier detection techniques are typically
required to examine anomalies in data across space and time
[6]. In this study, we consider outliers with respect to their
spatial neighbors and then track them over time. A spatial
outlier is a spatial object whose non-spatial attribute values
are sigfinicantly different from those of other spatial objects
in its spatial neighborhood [5]. In fusion plasma data, spatial
outliers are associated with blob-filaments, which do not
happen at a collection of scattered points but usually several
groups of adjoining spatial points or regions. Detection
and tracking of these multiple regions from a continuously
arriving stream is a challenging task due to the various
spatial scales and shapes of region outliers [7], [8].

Blob Detection
Data Stream

100

Data Generation
(Experiments or
Simulations)

Blob Detection
Data Hub

Blob Detection

Fig. 1: A real-time data analysis frame for finding blob-
filaments in fusion plasma data streams

This work is motivated by several considerations re-
sponding to extreme scale computing and big data chal-
lenges in fusion energy. Fusion experiments and numerical
simulations can easily generate massive amounts of data
per run. During a magnetic fusion device experiment (or
”shot”), terabytes of data are generated over short time
periods (on the order of hundreds of seconds). In the XGC1
fusion simulation [9], [10], a few tens of terabytes can be
generated per second. Timely access to this amount of data
can already be a challenge [11], [12], but analyzing all this
data in real time is impractical. Currently, there are three
types of analyses in most of fusion experiments: in-shot-
analysis, between-shot-analysis, and post-run-analysis. All
existing blob detection methods address post-run-analysis,
but in this work, we focus on the more challenging first
two cases to provide a real-time analysis so that scientists
can monitor the progress of fusion experiments. Figure
1 presents a real-time analysis frame for finding blob-
filaments in fusion plasma data streams. To perform this
data analysis in real time, we utilize effectively modern
supercomputers.

This work has been integrated into the International
Collaboration Framework for Extreme Scale Experiments
(ICEE), a wide-area in-transit data analysis framework for
near real-time scientific applications [13]. ICEE takes advan-
tage of an efficient 10 solution ADIOS [14], and a cutting-
edge indexing solution FastBit [15], to design and construct
a real-time remote data processing framework over wide-
area networks for international collaborations such as ITER.
In this system, a blob detection algorithm is used to monitor
the health of the fusion experiments at the Korea Supercon-
ducting Tokamak Advanced Research (KSTAR). However,
existing data analysis approaches are often single-threaded,
only for post-run analysis, and take a long time to produce
results. Also, compared to the simulation data, the resolu-
tion of the raw camera data may be coarse, but interesting
features can still be identified after normalization. In order
to meet real-time feedback requirement, we develop a real-
time blob detection method, which can leverage in-situ raw
data in the ICEE server and find blob-filaments efficiently
during the fusion experiments. Our blob detection algo-
rithm is not limited to KSTAR only, and can be applied to
other real fusion experiments and numerical simulations.

In this research, we apply outlier detection techniques
to effectively tackle the fusion blob detection problem on
extremely large parallel machines. The blob-filaments are
detected as outliers by constantly monitoring specific fea-
tures of the experimental or simulation data and comparing

2

the real-time data with these features. Below we summarize
our main contributions:

e We formulate the blob detection and tracking prob-
lems as identifying different spatial region outliers
over time in terms of the spatial-temporal fusion
plasma data streams.

o We propose a two-phase region outlier detection
method for finding blob-filaments. In the first phase,
we apply a distribution-based outlier detection
scheme to identify blob candidate points. In the
second phase, we adopt a fast two-pass connected
component labeling (CCL) algorithm from [16] to
find different region outliers on a refined triangular
mesh. To the best of our knowledge, this is the first
time the CCL algorithm has been used to detect re-
gion outliers such as blob-filaments in fusion plasma.

e We develop a high-performance blob detection ap-
proach to meet real-time feedback requirements by
exploiting many-core architectures in a large cluster
system. This is the first work to achieve real-time
blob detection in only a few milliseconds.

o We propose a scheme to efficiently track the move-
ment of region outliers by linking the centers of the
region outlier over consecutive frames.

e We have implemented our blob detection algorithm
with hybrid MPI/OpenMP, and demonstrated the
effectiveness and efficiency of our implementation
with a set of data from the XGC1 fusion simula-
tions. Our tests show that we can achieve linear
time speedup and complete blob detection in two
or three milliseconds using a cluster at NERSC. In
addition, we demonstrate that our method has better
detection accuracy than recently developed state-of-
the-art blob detection methods in [17], [18].

The rest of paper is organized as follows. In Section II,
we give the problem formulation of the blob detection and
discuss related work. In Section III we describe a two-phase
region outlier detection algorithm and a tracking scheme
for identifying and tracking blobs. We then present a real-
time blob detection approach by leveraging MPI/OpenMP
parallelization in a large cluster in Section IV. The blob
detection and tracking results and its real time evaluation
are shown in Section V. We conclude the paper, and give
our future plans in Section VI.

2 PROBLEM DEFINITION AND RELATED WORK

In this section, we introduce our problem definitions and
discuss previous work related to our study. For related
work, we first discuss existing research work on outlier
detection, and then review previous work on blob detection
in fusion plasma domain.

2.1 Problem Definition

In fusion plasma, the definition of a blob is varied in the
literature depending on fusion experiments or numerical
simulations as well as available diagnostic information for
measurements [4]. This makes blob detection a challenging
task. Figure 2 shows an image of the local normalized
density distribution in the regions of interest in one time

Blob Detection: time frame 64 and Poloidal plane 1

4
3.5
3
25
[
=
8 2
N
1.5
1
0.5
-0.25 ; : : : : 0
2.25 2.26 2.27 2.28 2.29 23 2.31
R value

Fig. 2: A contour plot of the local normalized density in the
region of interests in one time frame

frame. We can observe that there are two reddish spots
located at the left portion of the image, which are associated
with blob-filaments and are significantly different from their
surrounding neighbors. It is clear that a reddish spot is not
a single point but a group of connected points or a region.
Therefore, we formulate the blob detection problem as a
region outlier detection problem. Similar to the definition
of a spatial outlier [5], a region outlier is a group of spatial
connected objects whose non-spatial attribute values are sig-
nificantly different from those of other spatial surrounding
objects in its spatial neighborhood. As shown in Figure 2,
blobs are region outliers. The number of region outliers de-
tected will be determined by pre-defined criteria provided
by domain experts.

The problem is to design an efficient and effective
approach to detect and track different shapes of region
outliers simultaneously in fusion plasma data streams. By
identifying and monitoring these blob-filaments (region
outliers), scientists can gain a better understanding about
this phenomena. In addition, a data stream is an ordered
sequence of data that arrives continuously and has to be
processed online. Due to the high arrival rate of data, the
blob detection must finish processing before the next data
chunk arrives [19]. Therefore, another critical problem is
to develop a high-performance blob detection approach in
order to meet the real-time requirements.

2.2 Outlier Detection

The existing approaches to outlier detection can be clas-
sified into four categories: distance-based, density-based,
clustering-based and distribution-based approaches [1], [2].

Distance-based methods [20], [21] use a distance metric
to measure the distances among data points. It is based
on comparing a data point with a given number of other
data points. If the number of data points within a certain
distance from the given point are less than some pre-defined
threshold, then this point is determined to be an outlier. This
approach could be very useful if the pre-defined threshold
can be specified accurately. However, in practice, the data

3

points often exhibit different densities in different regions
of the data across space or time, then it may not be proper
to use a simple threshold value.

Density-based methods [22] assign a local outlier factor
(LOF) to each sample based on their local density. The
LOF determines the degree of outlierness, which provides
ranking scores for all sample points. Samples with high
LOF value are identified as outliers. The advantage of this
approach is that it does not require any prior knowledge
of the underlying distribution of the data. However, this
approach has a high computational complexity since the
distance between each sample point and all other points has
to be computed to obtain each local density value.

Clustering-based methods [23], [24] conduct clustering-
based techniques on the sample points of the data to charac-
terize the local data behavior. Since the clustering algorithms
do not focus on outlier detection, the outliers are produced
as by-products [23] and thereby they are not optimized for
outlier detection.

Distribution-based methods [5], [25] applies machine
learning techniques to estimate a probability distribution
over the data and develop a statistical test to detect outliers.
These methods can be broadly classified into two categories:
one-dimensional outlier detection and multi-dimensional
outlier detection [5]. One-dimensional outlier detection con-
siders the statistical distribution of the non-spatial attributes
and ignores the spatial attributes of the objects when con-
ducting statistical tests. Multi-dimensional outlier detection
methods model data sets in a multi-dimensional isometric
space and apply tests based on distance or density. These
methods use all dimensions to define a neighborhood for
comparison and do not distinguish non-spatial attributes
from spatial attributes.

In this work, we first apply distribution-based outlier
detection to detect outlier points by considering only non-
spatial attributes and then leverage CCL to construct the
region outliers to take spatial-attributes into account. We
choose distribution-based outlier detection since it can solve
the problem of finding outliers efficiently if an accurate
approximation of a data distribution can be properly found
[5], [26]. Normally the distribution of the stream data may
change over time [6]. However, this assumption may not
hold in the fusion experiments since a real fusion experi-
ment lasts very short time period from a few seconds to
hundreds of seconds.

2.3 Blob Detection in Fusion Plasma

Independently, fusion blob detection problems have been
researched by the physics community in the context of co-
herent structures in fusion plasma [4]. Various post-run blob
detection methods have been proposed to identify and track
these structures, to study the impact of the size, movement
and dynamics of blobs. A plasma blob is most commonly
determined by some threshold, computed statistically in the
local plasma density signal [27], [28], [29], [30]. However, the
exact criteria have varied from one experiment to another,
which reflects the intrinsic variability and complexity of the
blob structures. In [27], a conditional averaging approach
is applied to analyze spatiotemporal fluctuation data ob-
tained from a two-dimensional probe array inside the last

closed flux surface (LCFS) of the HL-2A tokamak. When
the vorticity is larger than one standard deviation at some
time frame, a blob is considered to be detected by the probe.
In [28], the conditional averaging technique is also used to
study the evolution of the blob-filaments using Langmuir
probes and a fast camera. If a reference signal, with a
certain sampling interval, has large fluctuation amplitude
greater than a specified trigger condition, a blob structure is
declared at that time frame.

Without using a conditional averaging technique, [29]
searches for blob structures can be done using local mea-
surements of the 2D density data obtained from a 2D probe
array. Identification of a blob is based on the choices of
several constraints such as the threshold intensity level, the
minimum distance of blob movement, and the maximum
allowed blob movement between successive frames. The
trajectories of the different blobs can be computed with
the blob centers based on identification results in each time
frame. The seminal work by Zweben, et. al. [29] was the
first attempt to take only individual time frame data into
account to detect blobs and track their movements, although
the process of identification of a blob was somewhat arbi-
trary and oversimplified. In [30], an analysis method was
presented in terms of object-related observables to allow a
sound probabilistic analysis. After preprocessing the signals
from 2D imaging data to form signal matrix, a threshold-
segmentation approach is used to identify blob structures
when the local density is greater than an appropriately
chosen threshold. Bounding polygons are also employed to
track blob movements and compute their trajectories.

Due to the emergence of fast cameras and beam emission
spectroscopy in the last decade, the situations of insufficient
diagnostic access and limited spatial and temporal resolu-
tion have been greatly improved. In [31], an image analysis
for the identification of blobs has been presented based on
gas puff imaging (GPI) diagnostic images from an ultra-
high speed, high resolution camera. The raw images are first
processed to remove the noise spikes, followed by further
smoothing using a Gaussian filter. The blobs are identified
by various image segmentation techniques after further
processing which removes the background intensity from
the images. However, due to noise and lack of a ground
truth image, this approach can be sensitive to the setting
of parameters, and it is hard to use generic method for all
images. Some sophisticated statistical analysis techniques
have been exploited to characterize the blob structures and
motions. In [32], [33], various researchers have leveraged
eigenvalue or singular value decomposition technique to
identify the basic components and properties of blob struc-
tures.

Recently, several researchers [17], [18], [34] have devel-
oped a blob-tracking algorithm that uses raw fast camera
data directly with GPI technique. In [17], [18], they lever-
age a contouring method, database techniques and image
analysis software to track the blob motion and changes
in the structure of blobs. After normalizing each frame
by an average frame created from roughly one thousand
frames around the target time frame, the resulting images
are contoured and the closed contours satisfying certain size
constraints are determined as blobs. Then, an ellipse is fitted
to the contour midway between the smallest level contours

Fusion data stream

Distribution-based outlier
detection

Outliers: (s, n(r;, z, t)

CCL-based region outlier
detection

Region outliers:
Blobs

Fig. 3: Two-phase region outlier detection for finding blobs

and the peak. All information about blobs are added into
a SQL database for more data analysis. This method is
close to our approach but it can not be used for real-time
blob detection since they compute time-averaged intensity
to normalize the local intensity. Additionally, only closed
contours are treated as blobs, which may miss blobs at
the edges of the regions of interest. Finally, these methods
are still post-run-analysis, which cannot provide real-time
feedback in real fusion experiments.

3 OUR PROPOSED APPROACH

In this section, we provide a detailed description of our pro-
posed approach to region outlier detection for finding blobs.
Given a fusion data stream, which consists of a time ordered
sequence of sample frames that arrive continuously from
real fusion experiments or numerical simulations through
remote direct memory access protocols. Our data sets are
simulated electron density from the fusion simulation code
XGC1 [9], [10]. In the present data sets, simulation data is
captured every 2.5 microseconds for a total time window of
2.5 milliseconds. Each point s; € S in a time frame ¢ has a
spatial attribute (r, z,¢) which defines its location in a trian-
gulated measurement grid, and some non-spatial attributes
including all important plasma quantities such as electron
density n.(r,z,t) as well as connectivity information in a
poloidal plane. The spatial neighborhoods are defined for
each point from the connectivity database in a triangulated
grid. Formally, an region outlier responding to a blob is
defined as a spatial area in the regions of interest where
a subset B; C S is a group of connected outlier points s;.
Our overall goal is to develop an algorithm to detect
and track spatial region outliers (blobs) using a stream of
fusion data. To achieve this, we propose a two-phase ap-
proach, as shown in Figure 3. In the first phase, we apply a
distribution-based outlier detection algorithm to the fusion
data stream in order to detect outlier points which have
significantly higher non-spatial attributes than other points.
The outputs of this step are tuples (s;, ne (74, 2, t)), the 2D

Magnetic Fields in Poloidal Plane

T T T

o Poloidal Plane
* Region of Interests

1 1.2 1.4 1.6 1.8 2 22 2.4

(a) Regions of interest

0.251.7

*.
K]
48

0.2

*

£

+®,
*
@

nfhivetsg
or@H®
.

B
0.15%

K
®
I

0.1 8585

®.
*w**i@*w

kDK
.

— 0.05

@»«@*@*@*****

Z(m
o
*®*W*
BB
¥
K
*
K
* ok
K *$*

|
| o |
e L ©
N =
: T T
® ® 1,
D ® & Tk By B . *
kst Oxer@t Uk Db ok
¥ -
59*@*@*@:%* ¥ kgt A Bk
¥ B K
Kk,
& @ L ¥,
¥
*,
*
*,
¥
*,
¥
B Kok
¥
@
¥
Dy @
«
**%@ jé* 2
®. 5k *
o #2 &
e **;******** ®;
;ﬂ*w**@* B SHELK
@ & B kgky FEL®.
® ‘@ @
.

*
i)
e
®.
[
55
E3
®,
I
®.
%
B,
[
E:X
*.
@,
*.
B
*.
|®.
o
®,
*.
@
*.
®,
*.
IE
e
@]

(b) Refined and original vertices

Fig. 4: An example of the regions of interest and the comparison between refined and original triangular mesh vertices in

the R (radial) direction and the Z (poloidal) direction.

spatial attributes, and non-spatial attributes such as electron
density. These tuples, as well as connectivity information,
are used as input for the second phase, where region outlier
are detected by applying a fast CCL [16] to efficiently find
different connected components on the triangular mesh. The
outputs of the CCL-based region outlier detection algorithm
are a set of connected components with outlier points inside,
which are associated with blobs if some criteria are satisfied.

Note that our approach consists of two orthogonal steps,
therefore each of the two phases can be replaced by other
outlier detection methods. For example, one can leverage
density-based outlier detection to find outlier points in the
first phase. In addition, edge detection with fuzzy classifier
can be used to detect the boundary of region outlier in the
second phase [8].

In the following section, we describe the proposed two-
phase region outlier detection in detail.

3.1 Distribution-Based Outlier detection

The main task of this phase is to perform efficient outlier
detection to determine outlier points which form the region
outliers associated with blobs. In this work, we propose
a two-step, distribution-based outlier detection algorithm
based on the electron density with various criteria for fusion
plasma data streams. We separate spatial attributes from
non-spatial attributes and consider the statistical distribu-
tion of the non-spatial attributes to develop a test based on
distribution properties, since it is more suitable for detecting
spatial outliers [5]. As claimed in [26], it is very efficient to
find outliers by using a data distribution approximation if
we estimate the underlying distribution of data accurately.
Values for various criteria are determined by domain ex-
perts or subjectively by examining the resulting images and
adjusting them until satisfied.

The first step of the proposed outlier detection is to
preprocess the sample frame to compute needed quantities
in the region of interests, as shown in Figure 4a. Then
it is analyzed by normalizing the total electron density

ne(r, z,t) (which includes fluctuations) with respect to the
initial background electron density, n.(r, z,1) (if using real
diagnostic data from, e.g. GPI, actual emission intensity
I(r,z,t) would be used instead of electron density). Note
that using the initial time frame as the benchmark is an
important factor to achieve real-time blob detection. The
normalized electron density in the subsequent time frames
can be easily computed, especially compared to the time-
average electron density with a long time interval [18].

Algorithm 1 Triangular mesh refinement algorithm

Input/output:
triGrid: connectivity array of the triangular mesh
(r, z): spatial coordinate of each point
ne: normalized electron density of each point
1: Compute unique edges F and indices vector Ig by
sorting and removing duplicates based on triGrid
2: Compute spatial coordinate of each new vertices in the
middle of E based on (r, 2)
3: Compute electron density of each new vertices on E by
performing linear interpolation based on n.
4: Compute indices for each new vertices by adding vector
index Ig with the number of original points
5: Compute a new triangular mesh by assigning appropri-
ate indices from each new and old vertices

To obtain meaningful region outliers using the CCL
method, it is necessary to have fine grained connectivity
information. This particular simulation mesh has coarse
vertical resolution, so resolution enhancement techniques
are applied to generate a higher resolution triangular mesh
based on the original triangulated mesh. As shown in
Algorithm 1, the resulting triangular mesh is refined to
achieve four times better granularity. We create four times
vertices by using three middle points of the original mesh
edges in each triangle. The corresponding density of gen-
erated vertices can be obtained using linear interpolation
of the original triangular mesh. This step can be applied

4 Density distribution fitting using 50 bins
7 x 10

Number of points in each bin

0 2 4 6 8 10 12
Normalized electron density (n_e/n_e0)

(a) Extreme Value Distribution

4 Density distribution fitting using 50 bins
7 x 10

Number of points in each bin

0 2 4 6 8 10 12
Normalized electron density (n_e/n_e0)

(b) Log Normal Distribution

Fig. 5: An example of exploratory data analysis to analyze the underlying distribution of the local normalized density over

all poloidal planes and time frames.

recursively until the satisfactory resolution of the triangular
mesh is computed. Figure 4b shows the resulting triangular
mesh vertices after applying the triangular mesh refinement
algorithm once.

In order to apply an appropriate predefined quantile in
two-step distribution-based outlier detection, it is advised
to perform exploratory data analysis to exploit main char-
acteristics of the data sets. Figure 5 reveals that extreme
value distribution and log normal distribution are fitted best
with one of our sample data sets (after comparing over
sixteen different common distributions). After analyzing
the underlying distribution, a two-step outlier detection is
performed to determine outlier points in the regions of
interest. The basic idea of the proposed two-step outlier
detection is motivated from the observations that there are
relatively high density areas (a half banded ellipse area with
cyan color) in the edge and several significantly high density
small regions (a few small areas with reddish yellow color)
in these relatively high density areas, as shown in Figure 2.
The proposed outlier detection method extends the previous
approach that applies statistical detection with conditional
averaging intensity value [27], [28], and applies more in-
telligent two-step outlier detection with only considering
individual time frame data. Compared to traditional single
threshold segmentation approach, our approach is more
generic, flexible and easier to tune a satisfactory result.

In the first step, the standard deviation o and the ex-
pected value i are computed over all sixteen poloidal planes
in one time frame. Using the best fitted distribution, we
apply first step outlier detection to identify the relative high
density areas with a specified predefined quantile:

N(ri,zi,t) —p > axo,¥(ri, z;) €T 1)

where N is the normalized electron density, « is the multiple
of o associated to the specified predefined quantile and I’
is the domain in the region of interests. Once the relative
high density regions are determined, we compute another
standard deviation o2 and the expected value ps in these

areas. Then we employ second step outlier detection to
identify the outlier points in the relative high density areas
with an appropriately chosen predefined quantile:

N(ri,ziyt) — po > B x02,¥(ri, 2) € 'y V)

where [is the multiple of o9 associated to the judiciously
chosen confidence level and I'y is the domain of blob can-
didates. In practice, @ and can be chosen to be same or
different, depending on the characteristics of blob-filaments.
In our experience, the o value is generally greater than 3
since the standard deviation o over the region of interests
is much smaller than the standard deviation o5 from the
relative high density areas.

However, two-step outlier detection alone cannot be
used to distinguish the blob candidates since identified blob
candidates may actually have small density, which does not
satisfy traditional definition of blobs. Therefore, the density
of the mesh points in the outlier points smaller than a
certain minimum absolute value criterion need to be filtered
out. On the other hand, it is also possible that the middle
areas between surrounding plasmas and outlier points have
density higher than the given minimum absolute value
criterion. Thus, we also apply a minimum relative value
criterion to remove these unwanted points. To combine
these two rules together, we have a more robust and flexible
criterion:

N(Tia Ziy t) > max(dma7 (d’mr * H2)>7V(Tia Zl) S F3 (3)

where d,,,, and d,,, are minimum absolute value and min-
imum relative value respectively, and I's is the domain of
good blob candidates.

3.2 CCL-Based Region Outlier Detection

The main task of the second phase is to apply an efficient
connected component labeling algorithm adopted from [16]
on a refined triangular mesh to find different blob candi-
date components. A connected component labeling algo-
rithm generally considers the problem of labeling binary 2D

images with either 4-connectedness or 8-connectedness. It
performs an efficient scanning technique, and fills the label
array labels so that the neighboring object pixels have the
same label. Wu [16] presents an efficient two-pass label-
ing algorithm that is much faster than other state-of-the-
art methods and theoretically optimal. However, since we
process a refined triangular mesh rather than the traditional
2D images, we have modified their CCL algorithm to take
the special features of a triangular mesh into account. As
shown in Algorithm 2, each triangle is scanned first rather
than a point. Since we know the three vertices in a triangle
are connected, we can reduce unnecessary memory accesses
once any vertex in a triangle is found to be connected with
another vertex in a different triangle. Then we compute the
current minimum parent label in this triangle, and assign
each vertex a parent label if its label has already filled or a
label if its label has not initialized yet. If all three vertices
in a triangle are scanned for the first time, then a new
label number is issued and assigned to their labels and the
associated parent label. After the label array is filled full,
we need flatten the union and find tree. Finally, a second
pass is performed to correct labels in the label array, and all
blob candidates components are found. Note that to perform
efficient union-find operations, the union-find data structure
is implemented with a single array as suggested in [16].

Algorithm 2 Connected component labeling algorithm on
triangular mesh to find various blob candidates components

Input:
triGrid: connectivity array of the triangular mesh
Output:
B_.: Region structure of each blob candidate
Initialize label, parentLabel, and labnum
for Scanning each triangle until the end of triGrid do
if label of three vertices are all zero then
Assign a new labnum to all three vertices
Update label and parentLabel with labnum
else
Find the minimum parent Label of all three vertices
Update their label and parentLabel with this value
end if
end for
: for Scanning until the end of parentLabel do
Update parentLabel by flattening union-find tree
end for
for Scanning until the end of Label do
Update Label with latest parentLabel
end for
Find each B, of points with same parentLabel

O XN TN

e e N e e
NN Q

After all blob candidates are determined, a blob is
claimed to be found if the median of a blob candidate
component satisfies a certain minimum absolute median
value criterion. The reason we are setting this constraint to
select the blobs is that the minimum value criterion has to
be a reasonably small value in order to produce more blob
candidate components. It is possible that if the minimum
absolute median value criterion is too large, it may also
remove the blobs. On the other hand, it is also possible if this
value is too small, it does not have effect on filtering out un-

7

wanted components. Therefore, with the same philosophy
of measurement, a minimum relative median value criterion
is also applied to determine the blobs. However, in order to
protect the blobs from being removed due to the extremely
large mean value o, we also set the maximum absolute
median value criterion to limit the power of minimum
relative median value criterion. We unify these three rules
to be one:

N(ry, zi, t) > max(dpq, min((dme * p2), dza)),
V(’I"i7 Zi) S F4 (4)

where d,,q, dmyr and dg, are minimum absolute median
value, minimum relative median value and maximum ab-
solute median value respectively and I'y is the domain of
blobs.

3.3 Tracking Region Outliers

Another objective of this work is to track the direction and
speed of the detected blobs over time. The blob tracking
algorithm has to cope with the problem of tracking multiple
region outliers simultaneously even when the blobs merge
together or split into separated ones. On the other hand, the
blob tracking method should be simple and efficient to meet
real-time requirements. To achieve this goal, we propose an
efficient blob tracking algorithm by leveraging cues from
changes of blobs area and distance of center of blobs. We
compute the correspondence between previously tracked
blobs and currently detected blobs, and then recover the
trajectories of the tracked blobs.

To identify the location center of detected blob, we com-
pute the density-weighted average of the spatial coordinates
of each point inside a blob.

(Tc; Zc) = % Z(ﬁ Z)ne (5)
=1

where M is summation of n. of all points in a blob. The
density-weighted average is used to better capture the cen-
ter of density of a blob. We track the movement of these
detected blobs by linking the centers in consecutive time
frames. In order to obtain the boundary of region outliers
(blobs), we compute the convex hull [35] of a set of points
in a blob. The area of a blob is computed by counting the
number of points in a blob.

As shown in Algorithm 3, the input parameters are
current detected blobs and the previous blob tracks. The
data structure of a blob track is composed of the track ID,
the length of track, the area of previous blob, the time-
stamps, the center points, the boundary points, and the
velocity. There are two heuristics to verify whether a blob
is associated with an existing blob track. The first heuristic
is based on the fact that the area of a blob between consec-
utive time frames cannot decrease or increase significantly.
The second heuristic takes into account the distance of the
centers of a blob does not change dramatically over very
short time period (microseconds). The proper thresholds
for these two heuristics are provided by domain experts.
Since blobs can appear, disappear, merge together or split,
a greedy scheme is applied to find the best matching pair
of blob and track based on closest distance of the centers

Simulation or experiment data

Po

T1

\ OpenMP

T2

MPI

/ ‘ ~\\\ OpenMP \\ OpenMP
N % N w/ \ N

Fig. 6: Hybrid MPI/OpenMP parallelization

Algorithm 3 Efficient blob tracking algorithm

Input:
B: Current detected blobs
T Previous blob tracks
Output:
T': Updated blob tracks with B appended
Initialize hull, cen, and area
hull = getBoundary(B)
cen = getCenter(B)
area = getArea(D)
for Scanning until the end of B do
cenD1is = getCenterDis(B,T")
areaDif = getAreaDif(B,T)
if cenDis < maxJump A areaDif < maxDif then
Find a blob track T" with smallest cenD1is
Append current blob into this blob track 7'
end if
end for
Update T" with hull, cen, area, and computed speed

D I AR R o

e e
B

of current detected blob and the latest blob in a blob track.
Based on computed correspondence between a blob track
and the currently detected blobs, existing blob tracks are
automatically processed through corresponding operations
such as adding a blob into a track, creating a new track,
and a track ending. If the length of a track is smaller than
3 consecutive time frames, the track will be treated an
anomaly and deleted due to errors in data or inappropriate
blob detection thresholds. The speed and direction of the
blobs can thus be computed from two consecutive center
points. Finally, we can recover the trajectories of the tracked
blobs by monitoring the movement of blob centers.

4 A REAL-TIME BLOB DETECTION APPROACH

Existing blob detection approaches cannot tackle the two
challenges of the large amount of data produced in a shot
and the real-time requirement. In addition, existing data
analysis approaches are often operated in a single thread,
only for post-run analysis and often take a few hours to gen-
erate the results [30]. In order to meet the real-time feedback
requirement, we address these challenges by developing
a high performance blob detection approach, which can
leverage in situ raw data and find blob-filaments efficiently
in fusion experiments or numerical simulations.

4.1 A hybrid MPI/OpenMP parallelization

In our approach, we can complete our blob detection in a
few milliseconds using a hybrid MPI/OpenMP paralleliza-
tion with in situ evaluation. The key idea is to exploit many
cores in a large cluster system by running MPI to allocate
n processes to process one or several time frames at the
high level, and by leveraging OpenMP to accelerate the
computations using m threads at the low level. Our hybrid
MPI/OpenMP parallelization for blob detection is shown in
Figure 6.

In order to achieve blob detection in real time, the goal is
to minimize data movements at the memory and speed up
computation. Ideally, the performance is optimal without
any communication if we can perform the job correctly. The
proposed blob detection algorithm in the previous section
supports embarrassed parallel since we only need the initial
time frame and the target time frame to do the computation.
This is an important difference between our blob detection
method and recently developed methods [17], [18] in terms
of real-time requirement. Furthermore, we explore many-
core processor architectures to speed up the computation
of each MPI task by taking advantage of multithreading in
the shared memory. Therefore, our real-time blob detection
approach based on hybrid MPI/OpenMP parallelization is
a natural choice and is expected to provide the optimal
performance for fusion plasma data streams.

A practical interesting issue is how to tune the number
of MPI processes and OpenMP threads for the best perfor-
mance by taking both analysis speed and memory size into
account. As shown in Figure 7, we vary the number of MPI
processes and OpenMP threads but fix the total number to
be 24 for investigating the performance when processing the
same amount of time frames data. A faster analysis speed
is achieved when increasing the number of MPI processes
since more data frames can be processed simultaneously. On
the other hand, the analysis speed remains constant with
a few OpenMP threads and degrades with more OpenMP
threads due to lack of enough computation in one time
frame. However, more OpenMP threads could significantly
reduce the memory demands. Therefore, in this study, we
choose the number of OpenMP threads to be four for each
MPI task, to achieve a good trade off between analysis speed
and memory savings.

Total number 24 of MPIx OpenMP

[e]

~> Blob Det
—*—Blob Det + Comm |

~
T

[e2)
T
I

[$)]
T
I

Normalized Runtime
w

\S]
T
I

y
¥

0 5 10 15 20 25
Number of MPI

Fig. 7: Investigate the performance of hybrid MPI/OpenMP
parallelization when varying number of MPI processes and
OpenMP threads. The blue triangle denotes only normal-
ized blob detection time. The red star denotes the normal-
ized total time including both blob detection time and initial
communication time for broadcasting the first time frame to
all analysis nodes for normalization.

4.2 Outline of the implementation

We implement our blob detection algorithm in C with a
hybrid MPI/OpenMP parallelization. Algorithm 4 summa-
rizes the proposed blob detection algorithm without con-
sidering OpenMP. Users can specify the regions of interest
by (Rmin, Rmax, Zmin, Zmax), the range of target time
frames by (t_start, t_end), and the location of the data sets.
However, with in situ evaluation, there is no need to specify
the file location since all data are already in memory. We
use static scheduling to evenly divide the number of time
frames for each MPI task for efficiency. The n MPI processes
are allocated to process one or several time frames and m
OpenMP threads are launched to accelerate the computation
in one time frame. Note that the MPI process is also the
master thread in the runtime environment.

5 EXPERIMENTS AND RESULTS

In this section we present experimental evaluations of our
blob detection and tracking algorithms, and report the per-
formance of the real-time blob detection under both strong
and weak scaling. Before showing experimental results in
the next section, we briefly introduce our experimental
environment, data sets, and parameters setting in our blob
detection and tracking algorithms. We have tested our im-
plementation on the NERSC’s newest supercomputer Edi-
son, where each compute node has two Intel “Ivy Bridge”
processors (2.4GHz with 12 cores) and 64 GB of memory.
Our data sets are small simulation data sets (30GB) with
1024 time frames based on the XGC1 simulation [9] [10]
from the Princeton Plasma Physics Laboratory, which last
around 2.5 milliseconds. One of our main goals is that
we can control analysis speed by varying the number of
processes to complete the blob detection on the entire data
set in a time close to 2.5 milliseconds. It would indicate that

Algorithm 4 A real-time blob detection approach

Input:
Rmin, Rmax, Zmin, Zmax: specify region of interest
t_start, t_end : start and end time frames
FileDir: location where data sets locate
Output:
B: Detected region outliers (blobs)
1: Apply static scheduling to assign equal amount of n
time frames data to each MPI process
2: Broadcast the initial time frame to all MPI processes
3: fort =1:ndo
4: Process i loads raw data in one frame and computes
normalized density n.(r, z,t) in region of interest
5: Refine the triangular mesh. See Algorithm 1
6: Apply two-step distribution-based outlier detection to
identify outliers with various criteria
7: Apply CCL-based region outlier detection on a trian-
gular mesh to find blob components. See Algorithm 2
8: A blob is added into B if certain criteria is satisfied
9: end for

our algorithm could monitor fusion experiments in real time
(neglecting data transfer latency). If we consider internet
transfer latency in real experiments or numerical simulation,
the system needs at least 1 to 25 milliseconds to transfer one
time frame data depending on size of data, which may give
us more time for data analysis.

Another goal is to validate the effectiveness of the pro-
posed algorithms. In Algorithm 4, we apply various criteria
to identify the blobs. The parameters for blob detection
and tracking in our experiments are given in Table 1. One
criterion we have not mentioned in the previous section is
parameter “minArea”. This parameter is used to decide how
many points a blob should have, which is used to remove
impossibly small blobs. In our experiment, this parameter is
set to three since there are at least three vertices connected
as a 2D component in a triangular mesh. Another criteria
are parameters “maxFrames” and “minFrames”, which are
used to control the length of a blob track and remove noisy
tracks. It is important to note that these parameters need
to be tuned in order to achieve optimal performance in
different fusion experiments or numerical simulations. The
reasons for this uncertainty in the context of blob detection
are from the intrinsic variability and complexity of the blob
structures observed in different experiments [4].

TABLE 1: Parameters setting for the proposed blob detection
and tracking algorithms on XGC1 simulation data sets

detection criteria tracking criteria
minArea 3 | maxAreaChange 25
minRden 1.2 maxjump 0.04
minAbsRden 2.05 maxFrames 100
maxAbsRden 2.75 minFrames 3
minMden 1.3
minAbsMden 2.15

5.1 Performance comparison

We first conduct experiments to compare our method with
recently developed state-of-the-art blob detection methods
in [17], [18]. Since their methods are based on the con-
touring methods and thresholding, we call their methods
the contouring-based methods. We have to point out that
strictly quantitative comparisons are not possible since the
blob itself is not well-defined [4]. Due to this reason, there
are rarely direct comparisons between any new proposed
method and existing ones in the literature in the domain of
fusion plasma. [17], [18], [27], [28], [29], [30], [31], [34]. How-
ever, in order to demonstrate that our methods have better
accuracy than the contouring-based methods, we compare
these two methods in two typical cases to shed light on their
performance in terms of the detection accuracy.

Figure 8 shows the comparison of the blob detection
results between our region outlier detection method and the
contouring-based methods in two different time frames. As
shown in Figures 8a and 8b, we can see that our region
outlier detection method does not miss detecting the blob
at the edge of the regions of interest while the contouring-
based methods fail the detection. The reason is that the
contouring-based methods require the computed contours
are closed, which do not exist at the edge of the regions of
interest. In Figures 8c and 8d, we notice that our region
outlier detection method can accurately detect all blobs.
However, the contouring-based methods have much worse
performance that it either yields the blobs with incorrect
areas (much larger and smaller), or misdetect the wrong
area as a blob. This is because that it is hard to use one single
threshold to identify the blobs for all cases even in the same
experimental data sets. Our region outlier detection method
does not have such problem since we use more generic two-
step distribution-based outlier detection.

5.2 More blob detection results

We perform more experiments to comprehensively examine
the blob detection results in five continuous time frames and
four different poloidal planes as shown in Figure 9. As we
can see from the figure, our region outlier detection method
can provide satisfactory results in different situations. In
addition, our method does not miss any blobs at the edge
of the regions of interest, as shown in subfigures 9b, 9g, 9¢
and 9h. It is interesting to see that large-scale blob structures
are often generated, which could cause substantial plasma
transport [29]. As pointed out in [32], these large-scale
structures are mainly contributed by the low-frequency and
long-wavelength fluctuating components, which may be
responsible for the observations of long-range correlations.
We also noticed that different poloidal planes may display
significant diversity in edge turbulence, even in the same
time frame. We have shown that we are able to effectively
detect the blobs and reveal some interesting results to help
physicists improve their understanding of the characteristic
of blobs and their correlation with other plasma properties.

5.3 Blob tracking results

In this experiment, we investigate the blob tracking results
in two different situations. Figure 10a exhibits a 2D trajec-
tory of a blob. Again, the trajectory is generated by plotting

10

the location of the density peak of the detected blobs over
five consecutive time frames. We can see that our blob track-
ing algorithm can track two separate blobs simultaneously.
The blob size can grow when they move towards confined
plasma in the right region of separatrix. Figure 10b shows a
3D trajectory for a detected blob over fifteen consecutive
time frames. In this case, the blob seems to maintain its
size for a few time frames, then gradually decreases, and
eventually disappears. Through these interesting results,
physicists may be able to understand the characteristics of
blobs better.

5.4 Real-time blob detection under strong scaling

We have illustrated the accuracy and effectiveness of the
proposed blob detection and tracking methods. Next, we
perform a set of experiments to demonstrate the perfor-
mance of our real-time blob detection approach under
strong scaling and weak scaling.

Our most encouraging results are that we can complete
blob detection on the simulation data set described above in
around 2 milliseconds with MPI/OpenMP using 4096 cores
and in 3 milliseconds with MPI using 1024 cores. In Figure
11, we can achieve linear time speedup in blob detection
time under strong scaling. The MPI and the MPI/OpenMP
implementations accomplish 800 and 1200 times speedup
respectively, when the number of processes is scaled to 1024.
Also, we can see that the hybrid MPI/OpenMP implementa-
tion is about two times faster than the MPI implementation
when varying the number of processes from 1 to 512.
With 1024 processes, both of them achieve similar perfor-
mance, but the MPI/OpenMP one is slightly better. This
demonstrates that we are able to control analysis speed by
varying the number of processes to meet real-time analysis
requirement.

5.5 Real-time blob detection under weak scaling

In this set of experiments, we evaluate the performance
of our real-time blob detection under weak scaling. We
replicate existing data sets (30GB) in order to obtain ade-
quate experimental data sets (4.3TB). The basic unit data
contains 128 time frames and the size of data increases
linearly with the number of processes. In Figure 12, the blob
detection time remains almost constant under weak scaling,
which indicates that our implementations scale very well
to solve much larger problems. Also, both the MPI and
the MPI/OpenMP implementations achieve high parallel
efficiency as the number of processes increases from 1 to
1024.

6 CONCLUSION AND FUTURE WORK

Near real-time data analysis of the long-pulse fusion plasma
experiments presents both opportunities and challenges re-
sponding to extreme scale computing and big data in fusion
energy. In this paper, we propose, for the first time, a real-
time blob detection approach for finding blob-filaments in
real fusion experiments or numerical simulations. The key
idea of the proposed two-phase region outlier detection
scheme is based on distribution-based outlier detection with

Blob Detection: time frame 45 and Poloidal plane 1

4
0.25f
3.5
0.2f
0.15 3
0.1 25
$ 005
[2
N or
—0.05 1.5
-0.1 1
-0.15
0.5
-0.2
-0.25 ; ; . . 0
2.25 2.26 2.27 2.28 2.29 23 2.31
R value
(a) Contouring-based methods
Blob Detection: time frame 87 and Poloidal plane 1
4
0.25}
3.5
0.2f
0.15 3
0.1 25
$ 005
[2
N or
—0.05 1.5
-0.1 1
-0.15
0.5
-0.2

-0.25 * +
2.25 2.26 2.27 2.28

R value

2.29 2.3 2.31

(c) Contouring-based methods

11

Blob Detection: time frame 45 and Poloidal plane 1

0.25F

0.21

0.15

0.1

0.05F

Z value

-0.05

-0.1F

-0.151

-0.21

-0.25 : n n n .
2.25 2.26 2.27 2.28 2.29 23 2.31

R value

(b) Region outlier detection method

Blob Detection: time frame 87 and Poloidal plane 1

0.25F

0.2r

0.15

0.1

0.05F

Z value

-0.05

-0

-0.151

-0.21

-0.25 : n n n .
2.25 2.26 2.27 2.28 2.29 23 231

R value

(d) Region outlier detection method

Fig. 8: Two examples of comparing our region outlier detection method with the Contouring-based methods in the R
(radial) direction and the Z (poloidal) direction. The separatrix position is shown by a white line and the different pink and

blue circles denote blobs.

various criteria and a fast CCL method to find blob com-
ponents. In addition, an efficient blob tracking scheme is
presented to recover the trajectories of the motions of blobs.
We have implemented our blob detection algorithm with
hybrid MPI/OpenMP and demonstrated the accuracy and
efficiency of our implementation with a set of data from
the fusion plasma simulation code XGC1. Our tests show
that we can achieve linear time speedup and complete blob
detection in two or three milliseconds using a cluster at
NERSC.

We are currently working on integrating our blob detec-
tion algorithm into the ICEE system for consuming fusion
plasma data streams where the blob detection function is
used in a central data analysis component and the resulting
detection results are monitored and controlled from portable
devices, such as an iPad. We plan to test the proposed
method in both numerical simulations and real fusion ex-
periments.

ACKNOWLEDGMENTS

The authors would like to thank Scientific Data Manage-
ment Group at LBNL, and our collaborators in PPPL and
ORNL for their contributions to this work. The authors
thank Edmund Novak and Daniel Graham for their valuable
comments to improve the readability of this paper. The
authors would also like to thank the referees for their valu-
able comments. This work was supported by the Office of
Advanced Scientific Computing Research, Office of Science,
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231 and partially supported by NSF under
grants No. CCF 1218349 and ACI SI2-SSE 1440700, and by
DOE under a grant No. DE-FC02-12ER41890.

REFERENCES

[1] V.]J. Hodge and J. Austin, “A survey of outlier detection method-
ologies,” Artificial Intelligence Review, vol. 22, no. 2, pp. 85-126,
2004.

12

Blob Detecton:ime frame 86 and Poloidal plane 1

Blob Detecton:ime frame &3 and Poloidal plane 1

Blob Detection:ime frame 54 and Poloidal plane 1 Blob Detecton:me frame 85 and Poloidal plans 1

s
3
25
. & 15
/ "
— o5
22 2w 2m 23 2:

o D S T e]

226

 Zvaue

z:m
) Z;u-
) z:m

>

28 221 2 229 © : 226 227 220 23 2m ©

Avae Avae

226 227 220 23 23

228 228
Avalie Avalie

(a) Frame 82 and plane 1 (b) Frame 83 and plane 1 (c) Frame 84 and plane 1 (d) Frame 85 and plane 1 (e) Frame 86 and plane 1

Blob Datecton:ime frame &3 and Poloidal plane 2 Blob Detection: ime fame 84 and Poloidal plane 2 Blob Detecton:ime frame 85 and Polodal lana 2 Blob Datecton: ime frame 86 and Poloidal plana £

Zuas
) Zv:ue
Zua
z v:ue

226 221 228 220
Avaluo

221 220 23 23 227 2%

228 228
Avalio Avale

(f) Frame 82 and plane 2 (g) Frame 83 and plane 2 (h) Frame 84 and plane 2 (i) Frame 85 and plane 2 (j) Frame 86 and plane 2

Blob Detection:ime frame 64 and Poloidal plane ¢

Blob Detecton:ime frame 53 and Poloidal plane < Blob Detecton:ime trame 85 and Polodal plane Blob Detecton: ime frame 86 and Poloidal plana <

Zvao

Zvae
Zvaue
Zvae

Avae

(m) Frame 84 and plane
(k) Frame 82 and plane 3 (1) Frame 83 and plane 3 3 (n) Frame 85 and plane 3 (o) Frame 86 and plane 3

Blob Detocton:ime frame &3 and Polodal plano ¢ Blob Detocton:ime frame 84 and Polodal plane ¢ B10b Detocton: ime trame 85 and Polodal plano ¢ Blob Detocton:ime tramo 86 and Polodal plane ¢

Zuvae
Zvao
Zvae

226 22
Avae Avae

228 228
Avalie Avalie

(p) Frame 82 and plane 4 (q) Frame 83 and plane 4 (r) Frame 84 and plane 4 (s) Frame 85 and plane 4 (t) Frame 86 and plane 4

Fig. 9: An example of the blob detection in five continuous time frames and four different poloidal planes in the R (radial)
direction and the Z (poloidal) direction. The separatrix position is shown by a white line and the different blue circles
denote blobs.

Trajectory of region outlier (blobs) Trajectory of region outlier (blobs)
0.25
~
0.2 158
0.15 156
154
0.1 °
% 152
i L fae
% 0.05 = 150
> €
N O = 148
-0.05 146
0.1 144
-0.15
-0.21
-0'25,25 2.26 2.27 2.28 2.2 2I3 2.31
3 . . 8 .29 R . Z value R value
R value
(a) 2D trajectory for detected blobs (b) 3D trajectory for detected blobs

Fig. 10: 2D and 3D center trajectories for detected blobs over consecutive time frames. The red solid polygon indicates the
starting times of the blobs tracked while the blue broken polygons indicate subsequent times of the same blobs tracked. The
centers of the moving blobs are linked to show their trajectories of the blob motion. The pink line represents the separatrix.

Runtime (Second)

Blob Detection Runtime: Strong Scaling

10 ‘ :
——MPI Runtime
| ——MPI1/OpenMP Runtime

10° | :
107"]
107} .

-3
10 ‘ ‘ ‘

10° 10’ 10° 10° 10

Number of processes

(a) Time

Speedup over sequatial

13

Blob Detection Speedup: Strong Scaling

10 w w
——MPI Speedup
—=—MPI/OpenMP Speedup
10° .
10% :
10" 3
0
10 ‘ ‘ ‘
10° 10' 10° 10° 10*
Number of processes
(b) Speedup

Fig. 11: Blob detection time and speedup with MPI and MPI/OpenMP varying number of processes under strong scaling

Runtime (Second)

Blob Detection Runtime: Weak Scaling

0.5 ‘ :
—e—MPI Runtime
—=—MPI/OpenMP Runtime
0.4r 1
OI&W |
0.2;/2/.3/‘3\5/5\6\3—/\“ B
0.1t]
0, X > 3 4
10 10 10 10 10

Number of processes

(a) Time

Parallel Efficiency

Blob Detection Efficiency: Weak Scaling

1%
0.8f 1
0.6 1
0.4r 1
0.2f 1
—e—MPI Efficiency
—=—MPI/OpenMP Efficiency
0 L T T
10° 10' 10° 10° 10*
Number of processes
(b) Speedup

Fig. 12: Blob detection time and speedup with MPI and MPI/OpenMP varying number of processes under weak scaling

(2]
(3]
(4]

(5]

6]

(71

(8]

J. Han, M. Kamber, and J. Pei, “Data mining, southeast asia edition:
Concepts and techniques,” 2006.

R. Aymar, P. Barabaschi, and Y. Shimomura, “The iter design,”
Plasma Physics and Controlled Fusion, vol. 44, no. 5, p. 519, 2002.

D. DIppolito, J]. Myra, and S. Zweben, “Convective transport by in-
termittent blob-filaments: Comparison of theory and experiment,”
Physics of Plasmas (1994-present), vol. 18, no. 6, p. 060501, 2011.

S. Shekhar, C.-T. Lu, and P. Zhang, “A unified approach to de-
tecting spatial outliers,” Geolnformatica, vol. 7, no. 2, pp. 139-166,
2003.

M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, “Outlier detection
for temporal data: A survey,” IEEE Transactions on Knowledge and
Data Engineering, vol. 26, no. 9, pp. 1-1, 2014.

J. Zhao, C.-T. Lu, and Y. Kou, “Detecting region outliers in me-
teorological data,” in Proceedings of the 11th ACM international
symposium on Advances in geographic information systems. ACM,
2003, pp. 49-55.

C.-T.Luand L. R. Liang, “Wavelet fuzzy classification for detecting

(%]

[10]

[11]

[12]

and tracking region outliers in meteorological data,” in Proceedings
of the 12th annual ACM international workshop on Geographic infor-
mation systems. ACM, 2004, pp. 258-265.

C. Chang, S. Ku, P. Diamond, Z. Lin, S. Parker, T. Hahm, and
N. Samatova, “Compressed ion temperature gradient turbulence
in diverted tokamak edgea),” Physics of Plasmas (1994-present),
vol. 16, no. 5, p. 056108, 2009.

S. Ku, C. Chang, and P. Diamond, “Full-f gyrokinetic particle
simulation of centrally heated global itg turbulence from magnetic
axis to edge pedestal top in a realistic tokamak geometry,” Nuclear
Fusion, vol. 49, no. 11, p. 115021, 2009.

B. Dong, S. Byna, and K. Wu, “Expediting scientific data analysis
with reorganization of data,” in Cluster Computing (CLUSTER),
2013 IEEE International Conference on, Sept 2013, pp. 1-8.

“Sds: A framework for scientific data services,” in
Proceedings of the 8th Parallel Data Storage Workshop, ser. PDSW "13.
New York, NY, USA: ACM, 2013, pp. 27-32. [Online]. Available:
http://doi.acm.org/10.1145/2538542.2538563

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

J. Y. Choi, K. Wu, J. C. Wu, A. Sim, Q. G. Liu, M. Wolf, C. Chang,
and S. Klasky, “Icee: Wide-area in transit data processing frame-
work for near real-time scientific applications,” in 4th SC Workshop
on Petascale (Big) Data Analytics: Challenges and Opportunities in
conjunction with SC13, 2013.

J. E Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible io and integration for scientific codes through the adapt-
able io system (adios),” in Proceedings of the 6th international work-
shop on Challenges of large applications in distributed environments.
ACM, 2008, pp. 15-24.

K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs, E. Cormier-
Michel, C. Geddes, J. Gu, H. Hagen, B. Hamann et al., “Fastbit:
interactively searching massive data,” in Journal of Physics: Confer-
ence Series, vol. 180, no. 1. IOP Publishing, 2009, p. 012053.

K. Wu, E. Otoo, and K. Suzuki, “Optimizing two-pass connected-
component labeling algorithms,” Pattern Analysis and Applications,
vol. 12, no. 2, pp. 117-135, 2009.

W. Davis, M. Ko, R. Maqueda, A. Roquemore, F. Scotti, and
S. Zweben, “Fast 2-d camera control, data acquisition, and
database techniques for edge studies on nstx,” Fusion Engineering
and Design, vol. 89, no. 5, pp. 717-720, 2014.

J. Myra, W. Davis, D. D'Ippolito, B. LaBombard, D. Russell,]. Terry,
and S. Zweben, “Edge sheared flows and the dynamics of blob-
filaments,” Nuclear Fusion, vol. 53, no. 7, p. 073013, 2013.

S. Sadik and L. Gruenwald, “Research issues in outlier detection
for data streams,” ACM SIGKDD Explorations Newsletter, vol. 15,
no. 1, pp. 33-40, 2014.

E. M. Knox and R. T. Ng, “Algorithms for mining distancebased
outliers in large datasets,” in Proceedings of the International Confer-
ence on Very Large Data Bases. Citeseer, 1998, pp. 392—403.

F. Angiulli and F. Fassetti, “Detecting distance-based outliers in
streams of data,” in Proceedings of the sixteenth ACM conference on
Conference on information and knowledge management. ~ACM, 2007,
pp- 811-820.

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof:
identifying density-based local outliers,” in ACM sigmod record,
vol. 29, no. 2. ACM, 2000, pp. 93-104.

S. Guha, R. Rastogi, and K. Shim, “Cure: an efficient clustering
algorithm for large databases,” in ACM SIGMOD Record, vol. 27,
no.2. ACM, 1998, pp. 73-84.

Z. He, X. Xu, and S. Deng, “Discovering cluster-based local out-
liers,” Pattern Recognition Letters, vol. 24, no. 9, pp. 1641-1650, 2003.
E. Eskin, “Anomaly detection over noisy data using learned proba-
bility distributions,” in In Proceedings of the International Conference
on Machine Learning. Morgan Kaufmann, 2000, pp. 255-262.

S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki,
and D. Gunopulos, “Online outlier detection in sensor data using
non-parametric models,” in Proceedings of the 32nd international
conference on Very large data bases. VLDB Endowment, 2006, pp.
187-198.

M. Xu, P. Diamond, G. Tynan, C. Holland, P. Manz, N. Fedorczak,
S. C. Thakur, J. Yu, K. Zhao, J. Dong et al., “Turbulent eddy-
mediated particle, momentum, and vorticity transport in the edge
of hl-2a tokamak plasma,” in 24th IAEA Fusion Energy Conference,
San Diego, 2012.

G. Fuchert, G. Birkenmeier, B. Nold, M. Ramisch, and U. Stroth,
“The influence of plasma edge dynamics on blob properties in the
stellarator tj-k,” Plasma Physics and Controlled Fusion, vol. 55, no. 12,
p. 125002, 2013.

S. Zweben, “Search for coherent structure within tokamak plasma
turbulence,” Physics of Fluids, vol. 28, no. 3, p. 974, 1985.

S. Miiller, A. Diallo, A. Fasoli, I. Furno, B. Labit, G. Plyushchev,
M. Podesta, and F. Poli, “Probabilistic analysis of turbulent struc-
tures from two-dimensional plasma imaging,” Physics of Plasmas
(1994-present), vol. 13, no. 10, p. 100701, 2006.

N.S. Love and C. Kamath, “Image analysis for the identification of
coherent structures in plasma,” Optical Engineering+ Applications,
pp- 66 960D-66 960D, 2007.

G. Xu, B. Wan, W. Zhang, Q. Yang, L. Wang, and Y. Wen, “Multi-
scale coherent structures in tokamak plasma turbulence,” Physics
of Plasmas (1994-present), vol. 13, no. 10, p. 102509, 2006.

H. Tanaka, N. Ohno, Y. Tsuji, and S. Kajita, “2d statistical analysis
of non-diffusive transport under attached and detached plasma
conditions of the linear divertor simulator,” Contributions to Plasma
Physics, vol. 50, no. 3-5, pp. 256-266, 2010.

14

[34] R. Kube, O. E. Garcia, B. LaBombard, J. Terry, and S. Zweben,

“Blob sizes and velocities in the alcator c-mod scrape-off layer,”
Journal of Nuclear Materials, vol. 438, pp. S505-5508, 2013.

[35] T. M. Chan, “Optimal output-sensitive convex hull algorithms in

two and three dimensions,” Discrete & Computational Geometry,
vol. 16, no. 4, pp. 361-368, 1996.

