Business and Supply Chain M&S Applied Research Area

Rafael Diaz, Ph.D.
Ali Ardalan, Ph.D.
Wayne Talley, Ph.D.
Content

- Introduction
- Warehousing research
- Transportation research
 - Economic Impact Modeling
 - Routing Optimization
- JIT Production / Logistic research
- Future Endeavors
The Business and Supply Chain Applied Research Area - Overview

It seeks to identify and pursue fundamental research that:

- Bridges the gap between theory and practice.
- Uses M&S to develop innovative approaches in:
 - Supply chain, economics, operations research, and operations management.
Research Areas

1. Applications:
 - M&S in Manufacturing,
 - M&S in Service, and
 - M&S in Institutional Enterprises

2. Theoretical:
 - Optimization and Simulation-based Optimization
 - System Dynamics
 - DES
1. WH study: Optimizing SKUs slot assignments
Considering the dynamics of the demand

- Proposed a SKU assignment technique:
- Combined Optimization and Zoning, such that:
 1. Correlations.
 2. Throughput (fast/slow movers).
 3. Different weights.
WH study - Results

Time average

<table>
<thead>
<tr>
<th>Number</th>
<th>Sku per order</th>
<th>Batches</th>
<th>Ignore</th>
<th>Use</th>
<th>Name</th>
<th>%Improv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>0.76</td>
<td>0.70</td>
<td>C11</td>
<td>8.99%</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>0.87</td>
<td>0.79</td>
<td>C12</td>
<td>10.13%</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
<td>0.99</td>
<td>0.90</td>
<td>C13</td>
<td>10.61%</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>4</td>
<td>1.14</td>
<td>1.01</td>
<td>C21</td>
<td>12.87%</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>5</td>
<td>1.26</td>
<td>1.11</td>
<td>C22</td>
<td>13.63%</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>6</td>
<td>1.38</td>
<td>1.21</td>
<td>C23</td>
<td>14.33%</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>4</td>
<td>1.65</td>
<td>1.30</td>
<td>C31</td>
<td>26.83%</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>5</td>
<td>1.70</td>
<td>1.39</td>
<td>C32</td>
<td>22.30%</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>6</td>
<td>1.81</td>
<td>1.53</td>
<td>C33</td>
<td>18.13%</td>
</tr>
</tbody>
</table>

Traveled distance

<table>
<thead>
<tr>
<th>Batch Size</th>
<th>SKUs</th>
<th>Ignore</th>
<th>Use</th>
<th>%Improv</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>530.67</td>
<td>400.52</td>
<td>32.50%</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>613.63</td>
<td>474.38</td>
<td>29.40%</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>734.59</td>
<td>580.33</td>
<td>26.60%</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>602.19</td>
<td>409.16</td>
<td>47.20%</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>700.89</td>
<td>490.52</td>
<td>42.90%</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>841.04</td>
<td>609.18</td>
<td>38.10%</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>639.15</td>
<td>410.48</td>
<td>55.70%</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>746.71</td>
<td>491.69</td>
<td>51.90%</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>902.14</td>
<td>613.41</td>
<td>47.10%</td>
</tr>
</tbody>
</table>
2. Economic modeling: Determining economic impact of transportation alternatives
System dynamics model that consider direct and indirect economic impacts

Preliminary results:

Volume / Capacity

Effect on moving in

Effect on moving in: Current
3. JIT Production and Supply Chains
JIT Supply Chain

JIT supply chain systems:

- Demand from customers - Pull products
- Produce only WIP and final inventory
- More Efficient

Demand triggers what to produce on each stage
* Coordination
Looking Ahead

- Course: Supply Chain and Reverse Logistics –Spring 2010