
Analysis of Di-Hadron Azimuthal
Spin Asymmetries in Semi-Inclusive

Deep-Inelastic Scattering Using CLAS
at JLab

Wyatt Meldman-Floch

Advised by Keith Griffioen

Abstract

The goal of my research is to explore the contribution of quark orbital angular momentum to the
spin of the proton. This is accomplished by scattering electrons from quarks in a proton. I am studying
the case where the struck quark hadronizes into a pion-pair by analyzing the trajectories of the electron
and pion-pair. Since the pion’s azimuthal distribution about the axis of momentum transfer is sensitive
to the orbital motion of the original quark, my project looks for asymmetries in the azimuthal angular
distribution of pion-pair production.

I. Mystery of Proton Spin

The origin of the proton’s spin is still a mystery. Consider the spin sum rule

1
2
=

∆Σ
2

+ ∆G + Lz (1)

where 1
2 is the proton spin in h̄ units, ∆Σ is the spin contribution from quarks, ∆G is the spin

contribution of quarks and gluons and Lz is the contribution of quark and gluon orbital angular
momentum. The spin contribution of orbital angular momentum is Lz. Experiments [1] testing
the attribution of the proton’s spin to its quarks concluded that quark spin accounts for about 25
percent of the proton’s total spin. Other Experiments [2] indicate that gluon spin also contributes
little to the proton’s spin. Therefore orbital angular momentum is most likely the dominant
component of the proton spin. However, orbital angular momentum is difficult to measure directly.
One probe that is sensitive to the orbital angular momentum of the proton is high energy electron
quark scattering. The struck quark can hadronize into various particles, the lightest of which are
pions. The pion’s azimuthal distribution with respect to the electron momentum transfer direction
is sensitive to the orbital motion of the original quark [2]. Some data have already been taken
in the EG1 experiment at JLab’s Hall B using the CLAS spectrometer. A schematic diagram of
this type of experiment is given in Figure 1. Figure 1 shows the kinematics of the semi-inclusive
deep-inelastic scattering reaction. An incident electron ` scatters from a quark in a proton and
the scattered electron continues on the trajectory `′. The momentum of the virtual photon is
q and ν is the energy of the virtual photon, which is transferred as the electron scatters. The

1

squiggle represents a virtual photon exchanged from the electron to the quark. The transverse
spin of the target with respect to q, the momentum transfer, is ST . The difference in momenta
between the the two pions is given by R. A plane can be constructed by the incident and scattered
electrons (denoted as scattering plane in Figure 1). The angle between the scattering plane and the
transverse spin of the target with respect to q is given by φS. The 4-momentum of the scattered
electron is `′ . The 4-momentum of the scattered quark is q. The transverse component of the
two-pion momentum difference is RT . The angle between the momentum of the pion-pair, Ph
is the sum of the individual pions, P1 and P2 and the scattering plane is φh. The blue plane in
Figure 1 is made by the the virtual photons and Ph. The pink plane, denoted as the two-hadron
plane in Figure 1, is made by the trajectories of P1 and P2 in the two hadron rest frame. The
azimuthal scattering angle, φR, is the angle between the two-hadron plane and the scattering plane
and is calculated using Eq (2). My project looks for asymmetries in the azimuthal distribution of
pion-pair production, which are sensitive to spin-orbit correlations of quarks in the proton.

φR =
q× ` · RT

|q× ` · RT |
cos−1 q× ` · q× RT

|q× `||q× RT |
. (2)

Also of interest is the fraction of the virtual photon energy carried by the pion-pair,

z =
Eh
ν

, 0 ≤ z ≤ 1, (3)

the squared 4-momentum transfer is

Q2 = 4EE′ sin2 θ/2 (4)

and the fraction of the proton’s momentum carried by the struck quark is

x =
Q2

2Mν
(5)

where ν is the energy transfer of the electron to the quark. The fraction of the virtual photon
energy carried by the pion-pair, z = Eh

ν . The energy of hadron pair is Eh. The energy of the
incident electron is E. The energy of the scattered electron is E’. The angle between the incident
electron and scattered electron is θ.

II. Methodology

An asymmetry can be defined as:

A =
N+ − N−

N+ + N−
. (6)

If we denote the two possible spin polarizations of the target as ← and →, N+ corresponds to
electron and target spins anti parallel →← and N− corresponds to electron and target spins
parallel →→. The asymmetry in the azimuthal direction of pion-pair production depends on
(x, Q2, P2

T , φ, z).
Of most interest to my project is the azimuthal scattering angle φR, which is calculated using

Eq (2). The angle between the scattering plane, φR, and the pion center-of-mass plane (labeled
"two-hadron plane" in Figure (2) is used to calculate the extracted structure function g1(x, PT)

2

Figure 1: Schematic diagram of the experimental kinematics [1]

3

Eq (7) which is the sum over quark flavors, weighted by quark charge squared, of the difference
in probability of finding a quark aligned and anti-aligned with the proton’s spin. The structure
function g1 is a probability distribution of finding a quark with momentum fraction x. The
extracted structure function can be expanded in terms of quark distribution functions as

g1(x, PT) = ∑
i

e2
i [q
↑
i (x, PT)− q↓i (x, PT)]. (7)

(where (↑) denotes quark spin opposite (along) the proton spin.) If we write

q↑i − q↓i ≡ g1(x)q (8)

where the superscript refers to quark flavor, i.e. u, d, s, then the observed structure functions
are

FsinφR
LU = −x

|R|sinθ

Q
[

M
Mh

xeq(x, PT)H]q(z, cosθ, Mh) +
1
z

f q
1 (x, PT)G]q(z, cosθ, Mh)] (9)

FsinφR
UL = −x

|R|sinθ

Q
[

M
Mh

xeq(x, PT)H]q(z, cosθ, Mh) +
1
z

f q
1 (x, PT)G]q(z, cosθ, Mh)] (10)

FcosφR
LL = −x

|R|sinθ

Q
1
z

D]q(z, cosθ, Mh) (11)

FLL = xgq
1(x, PT)Dq

1(z, cosθ, Mh) (12)

FUU = x f q
1 (x, PT)Dq

1(z, cosθ, Mh) (13)

where the fragmentation functions, H]q(z) and G]q(z), are the probability of a struck quark
hadronizing into a pion pair at particular z-values, f q

1 (x, PT) is the structure function of the
unpolarized target and eq(x, PT) is a structure function that measures quark gluon correlations. The
masses of the proton and pion pair are M, Mh respectively. The structure functions FsinφR

LU , FsinφR
UL

and FcosφR
LL are the electron scattering probabilities. We’ve limited ourselves to longitudinally

polarized targets, and in order to extract g1(x, PT) we’re only interested in FLL and FcosφR
LL . We

don’t know g1(x, PT)
q and D]q explicitly, but data measured over a wide kinematic range can

callow us to extract these from data. In order to calculate g1(x) and compare it to the theory, we
need to check for a cosφR dependence in the asymmetry of φR. If the graph of the φR asymmetries
shows a cosφR + constant dependance, then this supports the g1(x, PT) from the di-hadron cross
section formalism in Equations 8-12.

My project scans a large CLAS data set of processed experimental scattering events and
histograms events and asymmetries as a function of the various kinematic variables. The CLAS
data were taken in 2000-2001. The experiment’s purpose was to extract the spin structure function,
g1. My project goes a step further to get the two dimensional function g1(x, PT), which is the spin
structure as a function of transverse momentum . While more data of this nature will be generated
when the 12 GeV experiments start in 2 years, this older data set allows us to get preview of what’s
going on in this reaction.

4

My project analyzed the transverse momentum dependance (P2
T) of the quark distributions

which the transverse momentum dependent extracted structure function g1(x, pT). Fitting asym-
metries as a function of φR allows us to extract the product g1(x, pT)H](z). If we know H](z)
from other experiments, we can extract g1(x, pT).

III. Procedure

My project uses the ROOT analysis framework extensively. ROOT is an open source analysis
software package developed at CERN that interprets C++ in order to visualize data. One of
C++’s functionalities is its ability to plot graphs from user specified n-tuples. An n-tuple is a data
structure that stores data in n-sized tuples. Tuples are a structure that contain data separated by
commas and are advantageous since specific data can be accessed by index. This is executed using
a C code called a root macro. My project began by creating ROOT macro routines to study the
kinematic variables and asymmetries from one CLAS run. Once this was completed I applied
these routines to the entire set of runs. The data set consisted of files with the same format which
were concatenated using the shell script in Appendix 7.

In order to sort the raw CLAS data by polarity I used the C++ code in Appendix 4. The code in
Appendix 4 searches each line of the data file for the helicity component and prints the line to an
out file if the helicity is correct. Sorted data was then used to calculate kinematic variables using
Appendix 1. To sort the kinematic variables into appropriate root n-tuples, I used the C++ code in
Appendix 5 and read in the out file generated from running the code in Appendix 1. The code
in Appendix 5 checks each line of the data file containing kinematic variables and prints lined
containing the kinematic variable of interest into an output file.

The root macro in Appendix 2 was used to generate histograms of kinematic variables (see
Figure 2,3). The C++ codes from Appendix 4 and 5 were used again to separate φR in both
polarities. With this data and the root macro in Appendix 3, histograms of φR for both polarities
are plotted as well as a plot of their asymmetries. With the same root macro a cosine fit is
superimposed on the φR asymmetry plot.

IV. Analysis

Consideration of spin orientations and pion charge was not necessary in the calculation of
the kinematic variables in Figure 2,3. Figures 2 and 3 are distributions of kinematic variables
independent of spin orientation and pion-pair charges. A histogram of the φR distribution is
given in h1. The bumps in the φR histogram only represent events accepted by the detector, thus
efficiency varies for different angles. In h2 is the mass of the two-pions distribution. The bump
around 0.8 GeV is characteristic of ρ meson production which occurs within that range. Graph h3
contains the θ center of mass distribution. The sudden drop after 1.5 is very curious. One would
expect a drop in accepted events around 1.5 due to the geometry of the detector. This is rather
low, but not necessarily indicative of bad data. The ν distribution in h4 is linear with a cut off
of around 5 GeV as expected given the energy range of CLAS. Plot h5 shows the Q2 distribution
ranging from just below 1 to about 5 GeV, which is within the range of CLAS. The plot of x in h6
is within expected range of 0 to 1. The typical value is between .2 and .3, implying that the struck
quark will have roughly a third of the proton momentum. The center of mass energy of the proton
system, W in h7 drops around 3GeV as expected. In plot h8, the distribution of z is contained

5

between .1 and .9, which is to be expected given that it is a fraction of the energy transfer that
comes from ν. The plot of missing mass in h9 falls around 3 GeV which is within expected range.
The plot of RT , the transverse component of the two-pion momentum difference in h10 is within
expected range of 0 to 1. The lower cut off at 2, for W (h7), eliminates resonances that occur below
2 GeV. In order to limit my experiment to the case of deep inelastic where the scattering of just
quarks and not the whole proton is considered, events beneath 2GeV must be neglected.

6

Figure 2: Part 1 of kinematic variable histograms

7

Figure 3: Part 2 of kinematic variable histograms

8

After checking the validity of the data by plotting the kinematic variables in Figures 2 and 3,
the ROOT macro routine in Appendix 3 was used to plot the asymmetries of φR. Histograms of
φR for each polarization are given along with a plot of the φR asymmetry.

The φR asymmetry in terms of the di-hadron cross section is given by

A =
FLL + FcosφR

LL cosθ

FUU
=

FLL
FUU

+
FcosφR

LL cosθ

FUU
(14)

where FLL
FUU

is the constant term in the fit of φR and FcosφR
LL cosθ

FUU
is the cosine-dependent term. If the

plot of φR asymmetries (Figure 3) showed a clear Cosine distribution, this would support the
model being tested. To calculate the φR asymmetry, the GetAsymmetry root method was used as
shown in Appendix 3.

Unfortunately, the Cosine fit parameters are much too small to indicate a proper fit. A possible
source of error that might affect a Cosine dependence in the φR asymmetry distribution are the
charges of the pions. In order to account for pion charges, the C++ code in Appendix 6 was used
to separate data by pion charge. For simplicity, we chose only cases where the pions had the same
charge. The macro in Appendix 3 was used to plot the φR histograms and asymmetry for the
charge-separated pions. The asymmetries for the charge-separated pions are shown in Figures 4
and 5.

As we can see, the φR asymmetries still do not show a clear cosine distribution in any case.
According to Equation 13, we would have at least expected a noticeable constant term. Fortunately,
the run info file showed that the half wave plate had not been accounted for. The half wave
plate was used to check for when runtime data is taken in opposite spin orientation. Thus not
accounting for the half wave plate flipped helicity in the data. The Asymmetry with the half wave
plate taken into account is calculated using Apendix 8 and shown in Figure 7. The Asymmetry
with the half wave plate in Figure 7 is .

9

Figure 4: φR separated by helicity and their Asymmetry

10

Figure 5: φR for positively charged pions separated by helicity and Asymmetry

11

Figure 6: φR for negatively charged pions separated by helicity and Asymmetry

12

Figure 7: φR Asymmetry Half Wave Plate Accounted

13

V. Conclusion

The goal of my research was to check the validity of the data set and look for noticeable asym-
metries in the φR distribution. It was shown that there is a φR asymmetry and it has a cosine
dependance, which is in accordance with theory. The next step is to check the φR asymmetry’s
dependance on other kinematic variables. This could be accomplished by plotting cumulative
asymmetry values that occur within specified ranges of the kinematic variable in question and
plotting the asymmetries.

14

VI. Appendix 1: C++ code to calculate kinematic variables

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

int main(int argc, char **argv) {
int helicity; // 1=positive helicity 2=negative helicity
int picharge[2]; // charge of the two detected pions
double beam_energy = 5.736; // beam energy in GeV
double four_mom_beam[4]; // 4-momentum of the electron beam
double four_mom_electron[4]; // 4-momentum of the electron in the lab frame
double four_mom_pion_lab[2][4]; // 4-momentum of the 2 pions in the lab frame
double four_mom_pion_cm[2][4]; // 4-momentum of the 2 pions in the cm frame
double four_mom_pion_cm_polar[2][4]; // 4-momentum of the 2 pions in the cm frame in polar coord.
double qq[4]; // 4-momentum transfer in lab frame
double qq_hat[4]; // unit vector
double qq_polar[4]; // qq in polar coordinates
double four_mom_pair[4]; // 4-momentum of the pion pair in the lab frame
double four_mom_pair_cm[4]; // 4-momentum of the pion pair in the cm frame
double four_mom_diff[4]; // 4-momentum difference of the pion pair
double four_mom_pair_hat[4]; // 4-momentum unit vector for pion pair
double four_mom_diffT[4]; // 4-momentum difference with momentum perp to pair
double tmp[4]; // temporary 4-momentum
double tmp1[4]; // temporary 4-momentum
double tmp2[4]; // temporary 4-momentum
double tmp3[4]; // temporary 4-momentum
int flag; // flag variable
int counts[45][45]; // events with (theta,phi)
int ii, jj;

double nu, ww, xx, q2, zz; // electron Lorentz invariants
double m2pi; // invariant mass of pion pair
double phiR; // azimuthal angle
double thetaCM1, thetaCM2; // pion theta in CM of pair

double mass_electron = 0.000511; // mass of electron in GeV
double mass_pi= 0.13957; // mass of charged pion in GeV
double mass_pi0 = 0.13500; // mass of neutral pion in GeV
double mass_proton = 0.93827; // mass of the proton in GeV
double mass_missing; // missing mass for the reaction

void zeroth(double*, double); // calculates 0th component of a 4-momentum from other components
void diff4v(double*, double*, double*); // difference of 2 4-vectors

15

void sum4v(double*, double*, double*); // sum of 2 4-vectors
void scale4v(double*, double*, double); // scale a 4-vector by a constant
void print4v(double*, char*); // print a 4-vector and a string
double dot4v(double*, double*); // 4-vector dot product
double dot3v(double*, double*); // 3-vector dot product
void hat4v(double*, double*); // 4-vector normalized to the magnitude of the spacial part
void polar4v(double*, double*); // convert a Cartesian 4-vector to polar coordinates
void boost4v(double*, double*, double*); // Lorentz transform fm1 into frame where fm2 is at rest
void cross4v(double*, double*, double*); // cross product of vector, product of 0th component
void exchange4v(double*, double*); // exchance two four vectors

four_mom_beam[0] = sqrt(mass_electron * mass_electron + beam_energy * beam_energy);
four_mom_beam[1] = 0.0;
four_mom_beam[2] = 0.0;
four_mom_beam[3] = beam_energy;

for(ii=0;ii<45;ii++) {
for(jj=0;jj<45;jj++) {

counts[ii][jj] = 0;
}

}

while(scanf("%d %d %d %lf %lf %lf %lf %lf %lf %lf %lf %lf", &helicity, picharge, picharge+1,
four_mom_electron+1, four_mom_electron+2, four_mom_electron+3,
four_mom_pion_lab[0]+1, four_mom_pion_lab[0]+2, four_mom_pion_lab[0]+3,
four_mom_pion_lab[1]+1, four_mom_pion_lab[1]+2, four_mom_pion_lab[1]+3) != EOF) {

// printf("%g %g %g\n", four_mom_pion_lab[1][1], four_mom_pion_lab[1][2], four_mom_pion_lab[1][3]);
printf("\n");
printf("pion charges = %d %d\n", picharge[0], picharge[1]);
flag = 0;
if(picharge[0] == 1 && picharge[1] == -1) {

flag = 1;
}
if(picharge[1] == 1 && picharge[0] == -1) {

exchange4v(four_mom_pion_lab[0],four_mom_pion_lab[1]);
flag = 1;

}
// if(flag != 1) { continue; }

zeroth(four_mom_electron, mass_electron);
zeroth(four_mom_pion_lab[0], mass_pi);
zeroth(four_mom_pion_lab[1], mass_pi);

// printf("%g\n", four_mom_electron[0]);
sum4v(four_mom_pion_lab[0], four_mom_pion_lab[1], four_mom_pair);
diff4v(four_mom_pion_lab[0], four_mom_pion_lab[1], four_mom_diff);

16

m2pi = sqrt(dot4v(four_mom_pair,four_mom_pair));
diff4v(four_mom_beam, four_mom_electron, qq);
hat4v(qq, qq_hat);
polar4v(qq,qq_polar);
nu = qq[0];
q2 = -dot4v(qq,qq);
xx = q2 / 2 / mass_proton / nu;
ww = sqrt(mass_proton * mass_proton + 2 * mass_proton * nu - q2);
zz = four_mom_pair[0]/nu;

// calculate missing mass
diff4v(qq, four_mom_pair, tmp);
tmp[0] += mass_proton;
mass_missing = sqrt(dot4v(tmp,tmp));
x_feynman1 = 2 * dot3v(four_mom_pion_cm1,qq_hat) / ww;
x_feynman2 = 2 * dot3v(four_mom_pion_cm2,qq_hat) / ww;

//
printf("zz, mm = %g %g\n", zz, mass_missing);
printf("\n");
printf("nu, q2 = %g %g\n", nu, q2);
printf("\n");
printf("xx, ww = %g %g\n", xx, ww);
printf(x_feynman1,"x_feynman1=");
printf(x_feynman2, "x_feynman2=");

// printf("qq= %g %g %g %g\n", qq[0], qq[1], qq[2], qq[3]);
print4v(qq,"qq=");
print4v(qq_hat,"qq_hat=");
print4v(qq_polar,"qq_polar=");
print4v(four_mom_electron,"kprime=");
print4v(four_mom_pion_lab[0],"p_pi1=");
print4v(four_mom_pion_lab[1],"p_pi2=");
print4v(four_mom_pair,"p_pair=");
printf("m2pi= %g\n", m2pi);
boost4v(four_mom_pair, four_mom_pair, four_mom_pair_cm);
print4v(four_mom_pair_cm, "four_mom_pair_cm");
boost4v(four_mom_pion_lab[0], four_mom_pair, four_mom_pion_cm[0]);
boost4v(four_mom_pion_lab[1], four_mom_pair, four_mom_pion_cm[1]);
print4v(four_mom_pair,"p_pair=");
print4v(four_mom_pion_cm[0],"4-mom-pion-cm1= ");
print4v(four_mom_pion_cm[1],"4-mom-pion-cm2= ");
polar4v(four_mom_pion_cm[0], four_mom_pion_cm_polar[0]);
polar4v(four_mom_pion_cm[1], four_mom_pion_cm_polar[1]);
print4v(four_mom_pion_cm_polar[0],"4-mom-pion-cm-polar1= ");
print4v(four_mom_pion_cm_polar[1],"4-mom-pion-cm-polar2= ");
print4v(four_mom_diff, "pion difference= ");

17

hat4v(four_mom_pair,four_mom_pair_hat);
print4v(four_mom_pair_hat,"4-mom-pair-hat= ");

thetaCM1 = acos(dot3v(four_mom_pion_cm[0], four_mom_pair_hat) /
sqrt(dot3v(four_mom_pion_cm[0], four_mom_pion_cm[0])));

printf("thetaCM1 = %g radians, %g degrees\n", thetaCM1, thetaCM1*180/3.14159);

thetaCM2 = acos(dot3v(four_mom_pion_cm[1], four_mom_pair_hat) /
sqrt(dot3v(four_mom_pion_cm[1], four_mom_pion_cm[1])));

printf("thetaCM2 = %g radians, %g degrees\n", thetaCM2, thetaCM2*180/3.14159);

scale4v(four_mom_pair_hat, tmp, dot3v(four_mom_diff, four_mom_pair_hat));
diff4v(four_mom_diff, tmp, four_mom_diffT);
print4v(four_mom_diffT, "R_T= ");
scale4v(four_mom_diffT, four_mom_diffT, 0.5);
print4v(four_mom_diffT, "R_T= ");

cross4v(qq,four_mom_beam, tmp1);
cross4v(qq,four_mom_diffT, tmp2);

// tmp1[0] = tmp2[0] = 0.0;
phiR = acos(dot3v(tmp1,tmp2) / sqrt(dot3v(tmp1,tmp1)) / sqrt(dot3v(tmp2,tmp2)));
if(dot3v(tmp1,four_mom_diffT) < 0) {

phiR = - phiR;
}
printf("phiR = %g radians, %g degrees\n", phiR, phiR*180/3.14159);
printf("R_T dot 4-mom-pair= %g\n", dot3v(four_mom_diffT,four_mom_pair));

ii = (int) (thetaCM1 * 45 / 3.14159);
jj = (int) (phiR * 22.5 / 3.14159 + 22.5);
counts[ii][jj]++;
printf("ii, jj= %d %d\n", ii, jj);

}
for(ii=0;ii<45;ii++) {

fprintf(stderr,"\n");
for(jj=0;jj<45;jj++) {

fprintf(stderr, "%3d ", counts[ii][jj]);
}

}
}

// calculates the Oth component of a 4-momentum given the 3-momentum and a mass assuming the particle
// is on-shell

void zeroth(double *four_momentum, double mass) {

18

four_momentum[0] = sqrt(mass * mass + four_momentum[1] * four_momentum[1]
+ four_momentum[2] * four_momentum[2] + four_momentum[3] * four_momentum[3]);

return;
}

// calculates the sum of two 4-vectors: fv3 = fv1 - fv2

void sum4v(double *fv1, double *fv2, double *fv3) {
int ii;
for(ii=0;ii<4;ii++) {

fv3[ii] = fv1[ii] + fv2[ii];
}
return;

}

// calculates the difference between two 4-vectors: fv3 = fv1 - fv2

void diff4v(double *fv1, double *fv2, double *fv3) {
int ii;
for(ii=0;ii<4;ii++) {

fv3[ii] = fv1[ii] - fv2[ii];
}
return;

}

// print a 4-vector

void print4v(double *fv, char *string) {
printf("%s %g %g %g %g\n", string, fv[0], fv[1], fv[2], fv[3]);
return;

}

// 4-vector dot product

double dot4v(double *fv1, double *fv2) {
return fv1[0]*fv2[0] - fv1[1]*fv2[1] - fv1[2]*fv2[2] - fv1[3]*fv2[3];

}

// normalize a 4-vector fv1 such that the spacial components are a unit vector

void hat4v(double *fv1, double *fv2) {
double norm;
int ii;

19

norm = sqrt(fv1[1] * fv1[1] + fv1[2] * fv1[2] + fv1[3] * fv1[3]);
for(ii=0;ii<4;ii++) {

fv2[ii] = fv1[ii] / norm;
}
return;

}

// convert a Cartesian 4-vector into polar coordinates
// fv2[1] = r; fv2[2] = theta; fv2[3] = phi

void polar4v(double *fv1, double *fv2) {
fv2[0] = fv1[0];
fv2[1] = sqrt(fv1[1] * fv1[1] + fv1[2] * fv1[2] + fv1[3] * fv1[3]);
fv2[2] = acos(fv1[3] / fv2[1]);
fv2[3] = atan2(fv1[2], fv1[1]);

}

// Lorentz boost Particle 1 with 4-momentum fm1 into the frame where Particle 2
// with 4-momentum fm2 is at rest; fm3 is the boosted 4-momentum

void boost4v(double *fm1, double *fm2, double *fm3) {
double gamma, beta; // Lorentz boost parameters
double direction[4]; // unit vector in the direction of the boost
double magnitude; // magnitude of fm2 vector
double fm_para; // parallel component
double dot4v(double*, double*);
int index; // loop index

gamma = fm2[0] / sqrt(dot4v(fm2,fm2));
beta = sqrt(1 - 1/gamma/gamma);
printf("boost(): gamma, beta= %g %g\n", gamma, beta);
magnitude = sqrt(fm2[1] * fm2[1] + fm2[2] * fm2[2] + fm2[3] * fm2[3]);
printf("boost(): direction ");
for(index=0;index<4;index++) {

direction[index] = fm2[index] / magnitude;
printf("%g ", direction[index]);

}
printf("\n");
fm_para = fm1[1] * direction[1] + fm1[2] * direction[2] + fm1[3] * direction[3];
fm3[0] = gamma * (fm1[0] - beta * fm_para);
for(index=1; index<4; index++) {

fm3[index] = fm1[index] + (gamma * (fm_para - beta * fm1[0]) - fm_para) * direction[index];
}
return;

20

}

// Perform a cross product fv1 and fv2 spatial components while multiplying
// together the time-like components and putting the result in fv3

void cross4v(double *fv1, double *fv2, double *fv3) {
fv3[0] = fv1[0] * fv2[0];
fv3[1] = fv1[2] * fv2[3] - fv2[2] * fv1[3];
fv3[2] = fv1[3] * fv2[1] - fv2[3] * fv1[1];
fv3[3] = fv1[1] * fv2[2] - fv2[1] * fv1[2];
return;

}

// fv2 = fv1 * constant

void scale4v(double *fv1, double *fv2, double constant) {
int index;

for(index=0; index<4; index++) {
fv2[index] = fv1[index] * constant;

}
return;

}

// 3-vector dot product of the spatial part of 4-vectors fv1 and fv2

double dot3v(double *fv1, double *fv2) {
return fv1[1] * fv2[1] + fv1[2] * fv2[2] + fv1[3] * fv2[3];

}

// exchange fv1 and fv2

void exchange4v(double *fv1, double *fv2) {
double tmp[4];
int ii;

for(ii=0;ii<4;ii++) {
tmp[ii] = fv1[ii];

}
for(ii=0;ii<4;ii++) {

fv1[ii] = fv2[ii];
}
for(ii=0;ii<4;ii++) {

21

fv2[ii] = tmp[ii];
}
return;

}

22

VII. Appendix 2: Kinematic variable histogram macro

{

gROOT->Reset();

FILE *fp = fopen("Data.txt","r");
FILE *fpp = fopen("Data1.txt","r");
FILE *fp3 = fopen("DatathetaCM1.txt","r");
FILE *fp4 = fopen("kinvarsnu.txt","r");
FILE *fp5 = fopen("kinvarsxx.txt","r");
FILE *fp55 = fopen("kinvarszz.txt","r");
FILE *fp6 = fopen("R_t_sorted.txt","r");
FILE *fp7 = fopen("x_feynman_1.txt","r");

FILE *fp8 = fopen("phiR_1.txt","r");
FILE *fp9 = fopen("phiR_2.txt","r");

Float_t x,y,z,n,w,a,b,c,d,e,i,g,h,m;
Int_t ncols;
Int_t ncols2;
Int_t ncols3;
Int_t ncols4;
Int_t ncols44;
Int_t ncols_xx;
Int_t ncols_zz;
Int_t ncols_4mom;
Int_t ncols_xf;
Int_t ncols_xff;

char var1[132];
Int_t nlines = 0;
Int_t nlines2 = 0;
Int_t nlines3 = 0;
Int_t nlines4 = 0;
Int_t nlines44 = 0;
Int_t nlines_xx = 0;
Int_t nlines_zz = 0;
Int_t nlines_4mom = 0;
Int_t nlines_xf = 0;

Int_t nlines_xff = 0;

23

TFile *f = new TFile("basic.root","RECREATE");

TH1F *h1 = new TH1F("h1","phi_R Distribution",100,-180,180);
TH1F *h2 = new TH1F("h2","Mass of 2 Pions Distribution",100,0,2);
TH1F *h3 = new TH1F("h3","Theta Center of Mass",100,0,4);
TH1F *h4 = new TH1F("h4","Nu",100,2,5);
TH1F *h5 = new TH1F("h5","Q^2",1000,0,5);
TH1F *h6 = new TH1F("h6","X",100,0,0.7);
TH1F *h7 = new TH1F("h7","W",100,1.5,3.5);
TH1F *h8 = new TH1F("h8","zz",300,0,1);
TH1F *h9 = new TH1F("h9","Missing_Mass",100,0,3);
TH1F *h10 = new TH1F("h10","R_T (3-Momentum Vector Magnitude)",1000,0,1.5
);
TH1F *h11 = new TH1F("h11","x_feynman_1",100,0,3);

TNtuple *ntuple = new TNtuple("ntuple","data from ascii file","x:y:z:n:w");
while (1) {

ncols = fscanf(fp,"%s %s %s %s %f %s",var1,var1,var1,var1, &x, var1);
if (ncols < 0) break;

h1->Fill(x);

nlines++;

ncols2 = fscanf(fpp,"%s %f",var1,&y);

if (ncols2 < 0) break;

h2->Fill(y);
nlines2++;

ncols3 = fscanf(fp3,"%s %s %f %s %s %s",var1,var1,&z,var1, var1, var1);

if (ncols3 < 0) break;

h3->Fill(z);
nlines3++;

ncols4 = fscanf(fp4,"%s %s %s %f %f",var1,var1,var1,&n,&w);

if (ncols4 < 0) break;

h4->Fill(n);

24

h5->Fill(w);
nlines4++;

ncols_xx = fscanf(fp5,"%s %s %s %f %f",var1,var1,var1,&a,&b);
h6->Fill(a);
h7->Fill(b);
ncols_xx++;
ncols_zz = fscanf(fp55,"%s %s %s %f %f",var1,var1,var1,&c,&d);
h8->Fill(c);
h9->Fill(d);
ncols_zz++;
ncols_4mom = fscanf(fp6,"%s %f %f %f %f",var1,&e,&i,&g,&h);

m = sqrt(i*i + g*g + h*h);
if (nlines3 < 5) printf("R_T=%8s %g",var1,d);
h10->Fill(m);
ncols_4mom++;

}
printf(" found %d points
",nlines3);
fclose(fp);
fclose(fpp);
fclose(fp3);
fclose(fp4);
fclose(fp5);

fclose(fp6);
f->Write();

TCanvas *c1 = new TCanvas("c1","c1",50,50,800,600);

c1->Divide(2,5);
c1->cd(1);

h1->Draw();
c1->cd(2);
h2->Draw();
c1->cd(3);
h3->Draw();
c1->cd(4);
h4->Draw();
c1->cd(5);
h5->Draw();

25

c1->cd(6);
h6->Draw();
c1->cd(7);
h7->Draw();
c1->cd(8);
h8->Draw();
c1->cd(9);

h9->Draw();
c1->cd(10);
h10->Draw();
}

}

26

VIII. Appendix 3: φR separated by helicity and their Asymmetry

{
gROOT->Reset();

FILE *fp11 = fopen("phiR_1.txt","r");
FILE *fp12 = fopen("phiR_2.txt","r");

Float_t x,pr1,pr2,asymmetry,err,bin;

Int_t ncols_phiR1;
Int_t ncols_phiR2;

char var1[132];

Int_t nlines_phiR1 = 0;
Int_t nlines_phiR2 = 0;

TFile *f = new TFile("basic.root","RECREATE");

TH1F *h1 = new TH1F("Phi_R_1"," Phi_R_1",100,-3.14,3.14);
TH1F *h2 = new TH1F("Phi_R_2","Phi_R_2",100,-3.14,3.14);
TH1F *Asymmetry = new TH1F("Phi_R Asymmetry"," Phi_R Asymmetry ",100,-3.14,3.14);

TF1 *fit = new TF1("fit","[1] + [2]*cos(x*((3.14159)/180))");
fit->SetParLimits(1, -180, 180);

TNtuple *ntuple = new TNtuple("ntuple","data from ascii file","x:y:z:n:w");
while (nlines_phiR2 < 10896) {

ncols_phiR1 = fscanf(fp11,"%s %s %s %s %f %s",var1,var1,var1,var1, &pr1, var1);
ncols_phiR2 = fscanf(fp12,"%s %s %s %s %f %s",var1,var1,var1,var1, &pr2, var1);

h1->Fill(pr1);
h2->Fill(pr2);

Asymmetry = (TH1F*) h1->GetAsymmetry(h2);

nlines_phiR1++;
nlines_phiR2++;

}

fclose(fp11);

27

fclose(fp12);
f->Write();

TCanvas *c1 = new TCanvas("c1","c1",50,50,800,600);

c1->Divide(1,3);

c1->cd(1);
h1->Draw();

c1->cd(2);
h2->Draw();

c1->cd(3);
Asymmetry->Fit("fit");

Asymmetry->SetName("Asymmetry");
Asymmetry->Draw();
}

28

IX. Appendix 4: C++ code to sort data by helicity

//
// main.cpp
// r27070.twopi split
//
// Created by Wyatt Meldman-Floch on 3/26/13.
// Copyright (c) 2013 Wyatt Meldman-Floch. All rights reserved.
//
// Separates raw data by polarity. The second charcter in each raw data
// line contains the polarity.
//
//

#include <iostream>
#include <string>
#include <fstream>
#include <sstream>

using namespace std;

int main() {

fstream in;
ofstream out;

in.open("/Users/Wyatt/Desktop/seniorproject/twopi.big");
out.open("/Users/Wyatt/Desktop/seniorproject/root/twopi.big_2");

string search1 = "1";

string line;

while(in.good()) {
getline (in,line,’\n’);

if (line[1] == ’2’)
{

out << line <<endl;
}

}

in.close();

29

out.close();

return 0;

}

30

X. Appendix 5: C++ code to sort variables from data set

//
// main.cpp
// hist_reader
//
// Created by Wyatt Meldman-Floch on 1/11/13.
// Copyright (c) 2013 Wyatt Meldman-Floch. All rights reserved.
//
// Extracts relevent data from the sorted data file.
//

#include <iostream>
#include <string>
#include <fstream>
#include <sstream>

using namespace std;

int main() {

fstream in;
ofstream out;

in.open("/Users/Wyatt/Desktop/seniorproject/twopi.big_2.out");
out.open("/Users/Wyatt/Desktop/seniorproject/root/phiR_2_big.txt");

string search1 = "phiR";

string line;

while(in.good()) {
getline (in,line,’\n’);
if (line.find(search1) != string::npos)
{

out << line <<endl;
}

}

in.close();
out.close();

return 0;
}

31

XI. Appendix 6: C++ code to sort raw data set by charge

//
// main.cpp
// pion_charge_split
//
// Created by Wyatt Meldman-Floch on 4/18/13.
// Copyright (c) 2013 Wyatt Meldman-Floch. All rights reserved.
//

#include <iostream>
#include <string>
#include <fstream>
#include <sstream>

using namespace std;

int main() {

fstream in;
ofstream out;

in.open("/Users/Wyatt/Desktop/seniorproject/twopi.big");
out.open("/Users/Wyatt/Desktop/seniorproject/root/twopi.big_neg");

string search1 = "1";

string line;

while(in.good()) {
getline (in,line,’\n’);

if (line[3] == ’-’)
{
if (line[4] == ’1’)

if (line[6] == ’-’)
{

{if (line[7] == ’1’){

out << line <<endl;}

32

}

}}}

in.close();
out.close();

return 0;

}

33

XII. Appendix 7: Shell script to concatenate data sets

#Shell script used to contatenate all datafiles in one file

rm ../twopi.big

cat r27* > ../twopi.big

34

XIII. Appendix 8: φR Asymmetry with half wave plate

{
gROOT->Reset();
FILE *fp11 = fopen("dplate_1.phir","r");
FILE *fp12 = fopen("dplate_2.phir","r");
Float_t x,pr1,pr2,asymmetry,err,bin;

Int_t ncols_phiR1;
Int_t ncols_phiR2;
char var1[132];
Int_t nlines_phiR1 = 0;
Int_t nlines_phiR2 = 0;
TFile *f = new TFile("basic.root","RECREATE");
TH1F *h1 = new TH1F("Phi_R_1"," Phi_R_1",100,-180,180);
TH1F *h2 = new TH1F("Phi_R_2","Phi_R_2",100,-180,180);
TH1F *Asymmetry = new TH1F("Phi_R Asymmetry"," Phi_R Asymmetry no dplate",100,-180,180);
TF1 *fit = new TF1("fit","[1] + [2]*cos(x*((3.14159)/180))");

fit->SetParLimits(1, -180, 180);
TNtuple *ntuple = new TNtuple("ntuple","data from ascii file","x:y:z:n:w");

while(fscanf(fp11,"%s %s %s %s %f %s",var1,var1,var1,var1, &pr1, var1) != EOF){
h1->Fill(pr1);

nlines_phiR1++;}

while(fscanf(fp12,"%s %s %s %s %f %s",var1,var1,var1,var1, &pr2, var1) != EOF){
h2->Fill(pr2);
nlines_phiR2++;}

Asymmetry = (TH1F*) h1->GetAsymmetry(h2);
fclose(fp11);
fclose(fp12);

f->Write();
TCanvas *c1 = new TCanvas("c1","c1",50,50,800,600);
c1->Divide(1,3);
c1->cd(1);
h1->Draw();

c1->cd(2);
h2->Draw();

c1->cd(3);
Asymmetry->Fit("fit");

Asymmetry->SetName("Asymmetry");

35

Asymmetry->Draw(); }

36

References

[1] Sergio Anefalos Pereira (INFN - Frascati), DPWG meeting 12/10/2012

[2] A. Adare et al. (PHENIX Collaboration). Cross Section and Parity-Violating Spin Asymmetries
of W Boson Production in Polarized p p Collisions at sqrt[s] = 500 GeV. Physical Review
Letters 106, 6 2011

[3] M. M. Aggarwal et al. (STAR Collaboration). Measurement of the Parity-Violating Longitudinal
Single-Spin Asymmetry for W Boson Production in Polarized Proton-Proton Collisions at
s
√
=500 GeV. Physical Review Letters 106, 6 2011

37

