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Abstract

We consider a family of holographically dual models of supercon-

ductivity to test the robustness of holographic superconductor mod-

els in general. Following the treatment of Hartnoll et al. and Al-

brecht et al., we introduce the basic holographic model and then

develop a family of similar models by varying a parameter in the

spacetime metric of the holographic theory. We then calculate sev-

eral observables and compare with actual superconductor observ-

ables. This helps determine whether these holographic models ac-

tually explain superconductivity or if the agreement between the

theories and experiment is a coincidence.
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Chapter 1

Introduction

1.1 Motivation

Superconductivity is a phenomenon which has been subject to intensive study by the

physics community since its discovery. The development of a full and complete theory

of superconductivity would provide deep insights into the physics of condensed matter at

the fundamental level and also might provide a roadmap to develop novel superconduct-

ing materials. We are fortunate in having a very successful theory of superconductivity,

known as BCS theory after its inventors (Bardeen, Cooper, and Schrieffer) [1]. BCS the-

ory has successfully predicted the superconducting behavior of so called low-temperature

superconductors. However, BCS theory alone cannot describe materials who supercon-

duct at higher temperatures; this has led to widespread effort to develop theories which

accurately describe these materials.

Indeed, this effort has not escaped the notice of particle physicists, who have developed

theories of superconductivity utilizing the principle of holography [2] [3] [4], which is

the subject of our work. These theories develop a model of superconductivity which

describes the phenomenon as a higher dimensional theory, which is “dual” to the ordinary

dimensional theory. These efforts are inspired by other instances of holography found in
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particle physics, such as the study of black hole thermodynamics and string theory. The

models developed by Hartnoll et al. [2] have yielded some interesting results which seem

to match properties of high-temperature superconducting behavior, naturally motivating

further work with these models.

Essentially our research goals were to investigate possible generalizations of the work

of Hartnoll et al. [2] For simplicity, a specific spacetime metric was used to create the

holographic dual theory. We decided to consider the same model making procedure

with several other valid spacetime metrics. If these models of superconductivity offer

a compelling theoretical description of superconductivity (in particular high-temperature

superconducting behavior) then we would expect such models to robustly predict high-

temperature superconductor observables under several different equivalent regimes.

1.2 Superconductivity

A brief review of superconductivity is useful to frame our discussion. Superconduc-

tivity is a phenomenon in which a conductor displays two unusual properties: perfect

conductivity and the Meissner effect [1]. Conductivity is a property of a material which

describes how easily currents flow in that material; a material with perfect conductivity

allows direct currents to flow unimpeded. (Note: this does not mean that alternating cur-

rents flow without impedance; there is a nonvanishing impedance associated with these

currents even in perfect conductors, especially at very high frequencies.) However, a

material possessing only perfect conductivity is simply known as a perfect conductor; a

superconductor must have this as well as perfect diamagnetism as mentioned before. The

Meissner effect is the exclusion or expulsion of all magnetic fields within the conductor.

This is not a consequence of perfect conductivity but is a distinct phenomenon. To date,

the only perfect conductors discovered have been superconductors [1].

Superconducting materials undergo a phase transition with a characteristic critical

temperature under which the material enters a state with these two fundamental proper-
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ties. Superconductors are grouped into two types: Type-I and Type-II. (The distinction

between these two types is related to the ratio between the London penetration depth and

the superconducting coherence length; this is discussed in more depth in Tinkham [1].)

Type-I superconductors all have critical temperatures at or below 30 K; their behavior is

well described by the BCS theory. In fact, the 30 K limit comes from BCS theory, and

before the discovery of Type-II superconductivity, 30 K was thought to be the absolute

upper limit for superconducting states. However, some, but not all, Type-II supercon-

ductors operate above the 30 K limit, which naturally indicates a limitation of the BCS

theory. Alone, it cannot accurately describe such materials [1]. (Type-II superconductors

also display unusual behavior not seen in Type-I superconductors, such as the presence of

magnetic vortices known as Abrikosov vortices into the interior of the superconductor.)

We understand the conduction of electricity in materials as essentially an electron gas

moving in a fixed lattice of atoms. When the gas flows in the lattice, some of the electrons

collide with individual atoms and this transfers heat to the conductor. The electrons are

scattered by the atoms, and so the lattice resists the flow of the electron gas. This is

the origin of electrical resistance. According to BCS theory, however, materials in the

superconducting state behave differently. Pairs of electrons condense into a quasiparticle

known as a Cooper pair; this occurs due to the electrons interacting with phonons in the

lattice [1]. These pairs are able to flow as a superfluid in the lattice of the superconductor,

meaning the electrons will flow with no resistance. The superconducting behavior is thus

directly related to interactions with the lattice itself.

1.3 Holography

Holography is a broad term encompassing a variety of phenomena in which the physics

of a system is described equivalently in two different theories, each with differing dimen-

sionality. For example, the physics of a black hole, an object in 3+1 dimensions, can be

described entirely with the information on the horizon of the black hole, the boundary of
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the object which is in 2+1 dimensions [6]. (The convention “3+1” refers to the number

of spatial dimensions plus the number of time dimensions; this reflects the usage found

in the literature.) In a slightly more general case, the Maldecena conjecture [5], alter-

natively known as the AdS/CFT correspondence, relates a theory in higher-dimensional

Anti-de Sitter space with a field theory on the conformal boundary of this space. (This

is a conjectured correspondence, strongly motivated by work in string theory, but is not

proven [6].)

The case of black hole thermodynamics merits some more in depth discussion. Work

done by both Hawking and Bekenstein has demonstrated that black holes have thermody-

namic properties, such as temperature and entropy. This is at first glance quite striking,

because black holes are, naively, purely gravitational constructs; black hole solutions are

determined by purely geometric equations found in general relativity. However, combining

the physics of the event horizon with quantum effects of the vacuum leads to the inter-

esting phenomenon of Hawking radiation [6]. Consider an event horizon in the vacuum,

as in figure 1.1.

Any particle found on side one must fall into the black hole, and a particle found on

side two may escape. Ordinarily, in a perfect classical (relativistic) universe, absolutely

nothing can escape from the black hole; anything that crosses the event horizon is forever

trapped. However, we live in a quantum universe. Not only do we assign a nonzero

probability of a particle tunneling through this barrier, but we also have observed the

phenomenon of pair production. Sometimes, energy is “borrowed” from the vacuum to

allow a particle-antiparticle pair to be produced briefly; this is allowed due to the energy-

time uncertainty relation, given by [7]

∆E∆t ≥ ~
2
. (1.1)

These virtual particles wink in and out of existence throughout the vacuum. (Indeed,

this phenomenon is better understood using creation and annihilation operators found in
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Figure 1.1: Simplified view of an event horizon. The arrows represent the possible trajec-

tories of the particle through space and time.

second quantization.) Of course, combining this with the physics of the event horizon,

we have a potential issue. What happens when a pair is produced across the event

horizon, with one particle found on one side and its antiparticle found on the other side?

Naturally, one particle must be lost to the black hole, but the other particle might not

be. But now, the lost particle cannot annihilate its antipartner, and so the other particle

is no longer virtual, and the energy is no longer borrowed. When we recall that energy

has to be conserved, then we realize that the energy has to come from somewhere. The

answer is that the energy comes from the black hole itself, and that the black hole has

“radiated” this particle. This black hole must then have a temperature, and an entropy.

In fact, there are several laws of black hole thermodynamics [6], much like the laws of

ordinary thermodynamics, which relate statistical and gravitational quantities. We find

that the entropy of a black hole, which we would naively expect to be proportional to the

volume of microstates available to the system, is instead proportional to the area of the
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black hole horizon. We thus have a correspondence between two physical regimes, which

is the essence of the holographic principle.

Another example of holography is the hypothesized AdS/CFT correspondence as men-

tioned above, found in string theory. AdS/CFT refers to a correspondence between a

string theory in anti-de Sitter space and a quantum field theory on its conformal bound-

ary. This was first conjectured by Maldecena [5]; in fact, it is known that a theory of

quantum gravity is holographic, and so if string theory indeed provides a quantum the-

ory of gravity we should expect holography [6]. AdS/CFT provides a “dictionary” that

relates specific quantities in the two theories.

1.4 Holographic Superconductors

Thus the program we are pursuing is to use this AdS/CFT dictionary to develop a

theory of superconductivity using holographic techniques. This is precisely what is done

in Hartnoll et al. [2], and there is more elaboration in their review paper [4]. We will be

following their model, in which we introduce a charged complex scalar field (representing

cooper pairing) and the Maxwell field on an anti-de Sitter space black hole metric. We

will be working in the continuum, rather than a deconstructed approach, which is pursued

in Albrecht et al. [3]

The particular model we are studying will produce a theory in 3+1 spatial dimensions,

which is itself what we experience in everyday life. The holographic dual model will then

be in 2+1 dimensions; that is, we will be describing superconductivity in the plane in

time. As it happens, this is the type of behavior exhibited by cuprate superconductors,

which gives us a direct example of a superconductor to check our model [2]. The su-

perconducting geometry is shown in figure 1.2. However, rather than just considering

the AdS-Schwarzchild solution, we are instead interested in applying this technique to

other spacetimes that have similar, but not identical, behavior. The family of solutions,

described below, all have horizon behavior. If this model of high temperature supercon-
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Figure 1.2: Superconducting geometry of cuprate superconductors.

ductivity is robust - that is, if it is not just coincidental - we should see behavior in these

models similar to the original model. In particular, if these holographic models offer a com-

pelling description of high-temperature superconductivity - that is, if high-temperature

superconducting behavior is a result of holographic effects - then these models should

predict the same value for the superconducting gap, a well known observable whose value

is wrongly predicted by conventional BCS theory. If the model is purely coincidental, and

the high-temperature description is not due to holographic effects but peculiar aspects of

the spacetime metrics, then we would not expect our models to provide similar results to

the original model.
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Chapter 2

Generalized Holographic

Superconductor Models

2.1 The Basic Model

We will first give an overview of the holographic superconductor model first given by

Hartnoll et al. [2] The first step is specifying the spacetime metric, which is given by the

planar anti-de Sitter black hole solution:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
2. (2.1)

Here, dΩ2
2 refers to the polar angular dependence; we are working in 3+1 dimensions,

so the angular dependence is two-dimensional. As in [2] and [3] we work in the limit

where this spacetime is appropriate, neglecting the backreaction of the charge density of

the geometry. (If we were to include the backreaction, the Reissner-Nordstrom spacetime

geometry is more appropriate.) The function f(r) is given by [3]

f(r) =
r2

L2

(
1− µ

r3

)
. (2.2)

The parameters µ and L are the mass and length parameters of the black hole. This 3+1
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theory will be the dual to a 2+1 theory of superconductivity, consistent with the program

outlined previously.

As described in Appendix A, we know that the horizon of the black hole is given by

rH = 3
√
µ, and the temperature of the black hole is given by

T =
3rH
4πL2

. (2.3)

We note that the r coordinate runs from rH to infinity, since the spacetime metric does not

describe space inside the horizon. The position r =∞ is referred to as the UV boundary,

while r = rH is referred to as the horizon or IR boundary.

To introduce superconductivity, we must include a charged complex scalar field through

a lagrangian density function [3]:

L = −1

4
FµνF

µν + |(∂µ − iAµ)ψ|2 −m2|ψ|2. (2.4)

Here Aµ is the electromagnetic four-vector potential, Fµν = ∂µAν − ∂νAµ is the electro-

magnetic energy tensor, ψ is the charged complex scalar field, and the m2 corresponds to

a cooper pair operator of dimension 1 or 2, which is explained below [3]. (The indices µ

and ν run over the 3+1 dimensions of the theory.)

m2 =
2

L2
. (2.5)

This lagrangian density is integrated under the action

S =

∫
L√g d4x. (2.6)

Extremizing this, and identifying the quantity φ = A0 leads to the coupled system of

differential equations [3]

ψ′′ +

(
f ′(r)

f(r)
+

2

r

)
ψ′ +

φ2

f(r)2
ψ − m2

f(r)
ψ = 0, (2.7)
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φ′′ +
2

r
φ′ − 2|ψ|2

f(r)
= 0. (2.8)

These equations can be solved with appropriate boundary conditions (discussed in the

next section) to determine the fields ψ and φ.

At the UV boundary (which corresponds to r → ∞), we know that ψ and φ behave

as

ψ =
ψ(1)

r
+
ψ(2)

r2
+ ... (2.9)

φ = µ− ρ

r
+ ... (2.10)

We identify µ as a chemical potential and ρ as a charge density, in accord with the

AdS/CFT dictionary [2]. The quantities ψ(1) and ψ(2) are normalizable, and so we can

assert a boundary condition that one of them vanishes. This is described below.

2.2 Generalization

Our task now is to generalize the model described above. Rather than considering the

AdS-Schwarzchild solution, which was chosen for simplicity, we want to now complicate

the model slightly by changing the form of f(r) to represent a slightly different spacetime

metric. Our choice of new f(r) should preserve black hole behavior and a horizon, so as

to still observe holographic effects. We decided to choose

fp(r) =
r2

L2

(
1− µ

rp

)
. (2.11)

In essence, we have changed the form of f(r) quite simply to one dependent on parameter

p. In order to preserve holographic effects we should choose p ≥ 3; thus we recover the

previous model as a specific case of this model. The parameter µ still yields the position

of the horizon, but with the form rH = p
√
µ. As in Appendix A, we find the temperature

T =
prH
4πL2

. (2.12)
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We still retain the same Lagrangian density, and since the differential equations 2.6 and

2.7 keep the form of f(r) unspecified, we simply change our f(r) in our numerics to

calculate results for different models.
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Chapter 3

Calculation of Observables

3.1 The Cooper Pair Condensate

The cooper pair condensate can be identified directly with the field ψ which is specified

by the differential equations 2.6 and 2.7. This relationship is dictated by the AdS/CFT

correspondence [2]:

〈Oi〉 =
√

2ψ(i). (3.1)

As mentioned above, both ψ(1) and ψ(2) are normalizable and so we are free to choose

one of them to vanish; we choose ψ(1) to do so. The reason why this is true is that

AdS/CFT normally finds two independent solutions, only one is typically normalizable,

which is taken as the condensate. However, due to the r-dependence both terms have

finite action, and the interpretation is that AdS/CFT allows us the freedom of choosing

which of the two independent solutions is the condensate and which is the source. As we

have incorporated no sources in our model, we then set the source term to vanish.

We should now discuss the critical temperature of the superconductor. As with the

rules of AdS/CFT, we identify the temperature of the superconductor with the tempera-

ture of this black hole geometry. We have also calculated the temperature as a function
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of the horizon, as given by equation 2.12. The critical temperature is defined as the

temperature at which superconductivity is destroyed; thus we should expect the cooper

pair condensate to vanish at the critical temperature. This is where we define the critical

temperature - the radius (and thus temperature) at which the cooper pair condensate

vanishes [2].

We should now dictate the other boundary conditions. We would like φ to have finite

norm at the horizon, so we specify that φ(rH) = 0 [2]. This then specifies boundary

behavior at the horizon for ψ to be specified as ψ(rH) = −3rH
2
ψ′(rH). [2] Finally, at the

UV boundary we expect to recover the chemical potential by the AdS/CFT dictionary,

so we specify that φ(∞) = µ. [3] Taken together, we have all the boundary conditions we

need to solve the equation for ψ(2) and thus the cooper pair condensate.

Figure 3.1: Numerical results for calculating the cooper pair condensate.

To compute the fields ψ and φ we rely on numerical methods for calculation, as analytic
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solutions do not exist. This is not surprising given the complicated nature of these coupled

differential equations. The numerical method we used to solve these equations is the

shooting method in which this boundary value problem is converted to an initial value

problem. (This was implemented in Mathematica.) The results for p = 3, p = 3.5, and

p = 4 are shown in figure 3.1, with colors blue, red, and green respectively. The plot is

scaled with the critical temperature.

The critical temperature for each of these parameters p is given below:

Tc(p = 3) = 0.119ρ1/2 (3.2)

Tc(p = 3.5) = 0.136ρ1/2 (3.3)

Tc(p = 4) = 0.153ρ1/2 (3.4)

If we compare to Hartnoll et al. [2], we find not only that we recover their result for

p = 3 but also that the behavior of solutions p = 3.5 and p = 4 is similar.

3.2 The Conductivity

Calculating the conductivity relies on Ohm’s law, given (in one dimension) by

J(ω) = σ(ω)E(ω). (3.5)

That is, the current density is proportional to the applied electric field. As indicated, in

general the conductivity has a frequency dependent response, which is a known observable

that can be found experimentally. Hence, we should study the response to an oscillating

electric field. If we let Ar = 0, and choose one direction x in the angular dependence,

letting the other direction Ay = 0, we can study

Ax(t, r) = e−iωtA(r). (3.6)
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The equation of motion for Ax is given by [3]

− ω2

f(r)
A(r)− d

dr
(f(r)A′(r)) + 2A(r)|ψ(r)|2 = 0. (3.7)

In the UV limit, Ax has the the form [3]

Ax = A(0)
x +

A
(1)
x

r
+ ... (3.8)

As in Albrecht et al. [3], we identify Ex and Jx as

Ex = −∂tAx|r→∞ = iωAx|r→∞, (3.9)

Jx = A(1)
x = −r2∂rAx|r→∞. (3.10)

Figure 3.2: Numerical results for calculating the conductivity. Note the delta-function at

the origin for all three solutions.
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Thus the conductivity is identified as [3]

σ =
Jx
Ex

=
−r2A′(r)

iωA(r)

∣∣∣∣
r→∞

. (3.11)

This can also be numerically calculated, as in Albrecht et al. [3] the delta-function at

the origin is a consequence of the Kramer-Kronig relations: there is a pole in the imaginary

part of the conductivity which corresponds to a delta-function in the real part. This is

fitting given that superconducting behavior is a delta-function for DC (zero frequency)

currents. The result for p = 3, p = 3.5, and p = 4 is shown in figure 3.2, again with blue,

red, and green plots respectively. (The ratio T/Tc is 0.53.)

We can indeed go further and calculate the superconducting gap from this plot. We

know that Re(σ) should follow a behavior as

Re(σ) ∝ e−∆/T . (3.12)

Where ∆ is the superconducting gap. For each parameter p we can identify ∆ = Cp〈O2〉.

Fitting these plots, we obtain:

∆3 = 0.50
√
〈O2〉 (3.13)

∆3.5 = 0.55
√
〈O2〉 (3.14)

∆4 = 0.60
√
〈O2〉. (3.15)

Utilizing the data we calculated for the cooper pair condensate (at T/Tc = 0.53) and the

fact that ∆ = Cp〈O2〉 gives us the ratio of the superconducting gap to Tc. We quote 2∆

as in Hartnoll et al. [2]:

2∆3 = 8.40Tc (3.16)

2∆3.5 = 7.92Tc (3.17)

2∆4 = 7.68Tc (3.18)
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While still improvements over the standard BCS prediction of 2∆BCS = 3.54Tc, these

results suggest that the holgraphic effects do not consistently predict a high 2∆ value,

and so holographic effects might not be directly responsible for high-temperature super-

conductivity.
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Chapter 4

Conclusion

We have checked the behavior of a class of holographic superconducting models, which

appears to reflect similar behavior to the original model as given by Hartnoll et al. [2]

The models appear to have passed our tests of robustness, that is, the behavior of the

models is consistent across several parameters of p. The similar qualitative behavior

lends support to the idea that holographic models of superconductivity are indeed useful

to study. However, we did not find a consistently high value for 2∆ and so holographic

effects might not be directly responsible for high-temperature superconductivity.

4.1 Future Work

Our results are not necessarily conclusive evidence that holography is not responsible

for high-temperature superconducting behavior. Our assumption that these different

spacetime metrics should produce the same superconducting gap behavior might be wrong.

After all, spacetime is not only an active participant in our model but also the stage, so

to speak, and we should be careful to check our conclusions with further study.

There are several other opportunities for future work starting from this project. In

the immediate short term, we can further check the holographic behavior for additional
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values of p, potentially determining if there is any bifurcation occuring when p is varied.

We can also check different functional forms of f(r) for further robustness testing. In

addition, applying this generalization procedure to deconstructed models as in Albrecht

et al. [3] is currently being pursued.

We can also start from a different spacetime metric altogether; the Reissner-Nordstrom

metric is a natural choice, in which we do not neglect the backreaction of the charge

density on spacetime. Additionally the Kerr metric might be interesting to study, since

we know how superconductivity as a phenomenon behaves under rotation. Combining

these approaches with the Kerr-Newman metric might yield interesting results. Finally,

approaching superconductivity from a higher dimensional theory, such as describing 3+1

dimensional superconductivity with a 4+1 dimensional theory is another research avenue.
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Appendix A

Determination of the Hawking

Temperature

For completeness we show the complete derivation of the Hawking temperature from

the black hole spacetime metric itself. (This follows the treatment found in [8] [9] [10].)

We are given the general anti-de Sitter Schwarzschild black hole solution

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
2. (A.1)

Where f(r) is a function of r which determines the specific Schwarzschild black hole we

are looking at. For some power p, we have a family of AdS/Schwarzchild solutions, with

fp(r) =
r2

L2

(
1− µ

rp

)
. (A.2)

In terms of the parameter µ, we find the position of the horizon rH by demanding that

fp(rH) = 0; this gives us

rH = p
√
µ. (A.3)

We can rewrite the function fp(r) in terms of the horizon:
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fp(r) =
r2

L2

(
1−

(rH
r

)p)
. (A.4)

We first make the transformation to Euclidean time, t→ −iτ :

ds2 = f(r)dτ 2 + f(r)−1dr2 + r2dΩ2
2. (A.5)

Lets separate out the angular dependence, considering only the manifold of τ and r. Then

we have a metric described by

dz2 = f(r)dτ 2 + f(r)−1dr2. (A.6)

Suppose we consider r just outside the horizon: r = rH + ε. We will determine the

approximate spacetime metric, keeping terms of order 1 and ε. The functional form of

f(r) initially looks like (without throwing out terms)

f(rH + ε) =
(rH + ε)2

L2

(
1−

(
rpH

(rH + ε)p

))
=

1

L2

(
r2
H + 2rHε+ ε2 − rpH(rH + ε)2

(rH + ε)p

)
. (A.7)

We will now make the taylor series approximation (at ε = 0) (rH + ε)2−p ' r2−p
H (1 −

(2− p) ε
rH

). We have only kept terms of the approximation to O(ε).

f(rH + ε) ' 1

L2

(
r2
H + 2rHε+ ε2 − r2

H

(
1− (2− p) ε

rH

))
=

1

L2

(
r2
H + 2rHε+ ε2 − r2

H + (2− p)rHε
)

=
1

L2
(prHε+ ε2). (A.8)

Finally we toss out the ε2 term to obtain the final O(ε) approximation:

f(rH + ε) ' prHε

L2
. (A.9)
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This gives us a spacetime metric for our manifold

dz2 =
prHε

L2
dτ 2 +

L2

prHε
dε2. (A.10)

We will now make an appropriate coordinate transformation to put the metric in sugges-

tive form. First, let ξ = 2

√
ε

prH
L. Then ξ2 =

4εL2

prH
and dξ2 =

L2dε2

prHε
. After substitution

we obtain

dz2 = ξ2p
2r2
H

4L4
dτ 2 + dξ2. (A.11)

We will now make another coordinate transformation, χ =
prHτ

2L2
. Then dχ2 =

p2r2
H

4L4
dτ 2.

This gives us the metric

dz2 = ξ2dχ2 + dξ2. (A.12)

This geometry is, essentially polar coordinates in spacetime with one spatial dimension

and one (Euclidean) time dimension. There is an issue, however, with the unrestricted χ

variable, which is timelike; without restrictions to make χ periodic in time, we obtain a

conical singularity and our spacetime becomes geodesically incomplete. Fortunately we

are free to restrict χ in this sense. For constant ξ, which correspond to circles in Euclidean

time under our χ transformation, we want

∮
dz = 2πξ. (A.13)

for constant ξ we have dz = ξdχ, so we want to restrict χ ∈ [0, 2π]. Hence, we restrict τ

to be in [0, β], where

β =
4πL2

prH
. (A.14)

This β gives us the periodicity in Euclidean time, and produces a geodesically complete

spacetime solution. From the rules of AdS/CFT, we identify this periodicity as the inverse
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of the Hawking temperature of the black hole [11] [12]. That is, we identify the partition

function given by

Z = Tr e−βH, (A.15)

(where H is the Hamiltonian) with

e−iH∆t, (A.16)

where ∆t is the periodic time interval. (Now it becomes apparent why we made the

transformation to Euclidean time, besides making the form of A.12 suggestive.) So, we

have

THawking(rH) =
prH
4πL2

. (A.17)

This procedure can be applied to even more general f(r) solutions.
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