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Abstract

A technique for the numerical solution of the Black-Scholes equation is pre-

sented, and this technique is extended to new solutions of the Black-Scholes

equation in the presence of a deterministic time-dependent volatility term. It is

shown that solutions depart significantly from the constant volatility solution

around the derivative′s strike price. A new equation for valuing derivatives in

the presence of stochastically varying volatility is derived and, in its solution, it

is shown that investors buying put options priced using the constant volatility

formula are not adequately compensated for the risk which they bear.

1. Introduction

In this project, methods in mathematical and computational physics are

used in determining fair market values of derivative security instruments. This

includes an analysis of stochastic processes used in the modeling of investment

returns, and presents a stochastic model for the evolution of stock market volatil-

ity. First, a derivation of the Black-Scholes equation, first published in 1973 by

physicist Fischer Black and economist Myron Scholes, is presented. A numeri-

cal solution to this differential equation is developed using the finite-difference

method. The advantage of a numerical solution to this equation is that it allows

for deterministic time dependence to easily be added to the equation′s volatility

term. The effects of deterministic time-varying market volatility on the pric-

ing of derivatives are here examined. In addition a stochastic mean-reverting
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volatility model is presented in an attempt to explain variances in market re-

turns. The derivation of a new equation to value a derivative in the presence of

stochastic volatility is then presented.

2. The Black-Scholes Equation

Consider a Brownian motion described by W(t), a function with the property

that its differential, dWt, is a normally distributed random variable with mean

zero and variance dt, i.e. dWt = N(0, dt) =
√
dtN(0, 1), where N(a,b) is a

normal distribution function with mean a and variance b. Assume a stock

price, St, follows geometric Brownian motion with respect to time, such that:

dSt = µStdt+ σStdWt (1)

where µ is some constant drift term and σ is some constant volatility (stan-

dard deviation) term. A security, or asset, with value Vt(St, t) derives its value

from the value St of some underlying stock, and is referred to as a derivative.

In standard calculus, one would apply the chain rule to determine the value of

dVt. However, because St is a function of a random variable, Riemann calculus

does not apply, and one must use stochastic calculus. Ito′s Lemma provides a

generalization of the chain rule to a stochastic process of the form of equation

1. Ito′s Lemma states that dVt is given by:

dVt =

(
µSt

∂Vt
∂St

+
∂Vt
∂t

+
1

2
σ2S2

t

∂2Vt
∂S2

t

)
dt+ σSt

∂Vt
∂St

dWt (2)

Now, construct a portfolio wherein one sells a derivative security (initiates

a short position), and buys Θ shares of its underlying stock (initiates a long

position). The value of such a portfolio, Xt, is simply ΘSt−Vt, or in differential

form:

dXt = ΘdSt − dVt (3)

Substituting equations 1 and 2 into 3 yields:

dXt = ΘµStdt+ ΘσStdWt − µSt
∂Vt
∂St

dt− ∂Vt
∂t

dt− 1

2
σ2S2

t

∂2Vt
∂S2

t

dt− σSt
∂Vt
∂St

dWt

(4)
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If one chooses Θ = ∂Vt/∂St, then equation 4 becomes:

dXt = −∂Vt
∂t

dt− 1

2
σ2S2

t

∂2Vt
∂S2

t

dt =

(
−∂Vt
∂t
− 1

2
σ2S2

t

∂2Vt
∂S2

t

)
dt (5)

The stochastic term dWt has now dropped from the equation, and the value

of the portfolio, Xt, now evolves according to an entirely deterministic pro-

cess. Investment in such a portfolio would involve no risks; the outcome is

certain. Under the no arbitrage assumption (assumption of no guaranteed risk-

less profits), the value of such an investment must provide the same return as

an investment in risk free bonds which provide an interest rate r. The value of

a risk free bond portfolio, Yt, is Y0e
rt. Differentiation with respect to t yields:

dYt = rY0e
rtdt = rYtdt (6)

Because Xt and Yt both involve no risk, their differentials must be of the

same form; dXt = rXtdt. Equating equations 5 and 6 yields:(
−∂Vt
∂t
− 1

2
σ2S2

t

∂2Vt
∂S2

t

)
dt = r

(
St
∂Vt
∂St
− Vt

)
dt (7)

Which reduces to:

∂Vt
∂t

+ rSt
∂Vt
∂St

+
1

2
σ2S2

t

∂2Vt
∂S2

t

= rVt (8)

Equation 2.8 is the famous Black-Scholes equation, published by Fischer

Black and Myron Scholes in 1973 [1]. An analytic solution to this equation

can be determined by making the substitutions Vt = ertu, y = ln(St), τ =

T − t, andz = y(r − 0.5σ2)τ where T is the time of the derivatives expiration.

With these substitutions, equation 8 becomes:

∂u

∂τ
=

1

2
σ2 ∂

2u

∂z2
(9)

This is simply a one dimensional diffusion equation, for which the Greens

function is known to be:

G(z, τ) =
1

σ
√

2πτ
exp

(
− z2

2σ2τ

)
(10)
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One can obtain an analytic solution through taking an inner product of

equation 10 and a given initial condition, u0(z) to arrive at:

u(z, τ) =
1

σ
√

2πτ

∫
exp

(
− (z − y)2

2σ2τ

)
u0(y)dy (11)

3. Numerical Solution to Black Scholes

When one introduces deterministic time dependence to the volatility term,

the substitution of variables no longer produces a diffusion equation, and the

solution of the Black-Scholes equation becomes more difficult. For this reason,

a numerical solution was implemented using the finite difference method as

outlined in Numerical Recipes [2]. The derivatives in the Black Scholes equation

were discretized as follows:

∂Vt
∂St

=
Vi,j+1 − Vi,j−1

2(∆S)

∂2Vt
∂S2

t

=
Vi,j+1 + Vi,j−1 − 2Vi,j

(∆S)2

∂Vt
∂t

=
Vij − Vi−1,j

∆t

Where the indices i and j refer to discrete time and stock price values re-

spectively, and ∆t and ∆S are the selected time and stock price step sizes. In

order for solutions to converge, one should choose ∆t << ∆S. Substituting the

discretized derivatives into equation 8 and rearranging terms yields:

Vi−1,j = ∆t

(
1

2
σ2 S2

i

(∆S)2
− 1

2
r
Si

∆S

)
Vi,j−1 +

[
1−∆t

(
r + σ2 S2

i

(∆S)2

)]
Vi,j

+∆t

(
1

2
σ2 S2

i

(∆S)2
+

1

2
r
Si

∆S

)
Vi,j+1 (12)

Because the value of the derivative at expiration time T is the known bound-

ary condition, this value can be substituted in for VT,j for all stock prices j.

Equation 12 can then be used to calculate the value of the derivative one time
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Figure 1: Put-Option values for K = 55 price units, r = 0.03 per time unit, σ2 = 0.01 per

time unit, T = 10 time units, ∆t = 0.001 time units, ∆S = 1 price unit.

step before T. This new value is then substituted into the right hand side of

equation 12, and equation 12 can once again be used to find the value of the

derivative two time steps before T. This process is repeated until one arrives at

time t = 0.

Using this numerical algorithm, the prices of a European put-option were

calculated over a mesh of time and stock price values. A European put-option

gives the owner the right, but not the obligation, to sell a share of some un-

derlying stock for a strike price, K, regardless of the market price S. Such an

option may only be exercised at the expiration time T. The boundary condition

for this option is:

VT,j = max[K − Sj , 0] (13)

The finite-difference method was used to calculate the values for a European

put-option with strike price 55. The results are displayed in a plot in Figure 1.
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4. Monte Carlo Simulation of a Stock Market

In order to demonstrate the equivalence of risk free assets, a simulation of

a stock market was constructed. In this simulation, it is assumed that there

exists only one stock, and that there are no transaction costs. It is also assumed

that an investor is only able to buy or sell shares of stock once during a given

time interval. The stock price in this simulation follows the geometric Brownian

motion process described by equation 1, with the following parameters:

S0 = 50

µ = 0.1

σ2 = 0.2

K = 55

T = 300

The investor in this simulation begins by selling a call-option at the first time

step at the Black-Scholes price. This call-option gives the investor the right,

but not the obligation, to purchase shares of an underlying stock at a strike

price, K. He then buys a number of stock units equivalent to the derivative of

the call option value with repect to the underlying stock price. At each time

step, the investor adjusts his stock position so that the number of shares in his

possession remains equal to the value of the derivative of the option value with

respect to the stock value. At each time step, the net wealth of the investor is

measured. The investors wealth was measured for a total of 300 time units for

400 independent trials. The results of each trial were averaged together.

In figure 2, a sample path of the investors wealth and the average path are

displayed. It can be seen that, on average, the investors wealth may be fit to

an exponential growth function with an R2 of 0.9867. The investors portfolio in
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Figure 2: Wealth of an investor selling calls and purchasing underlying stock.

this simulation is therefore, on average, follows the exponential growth predicted

by equation 6. This portfolio equivalence is built into the assumptions of the

Black-Scholes equation.

5. Deterministic Volatility Time Dependence

An advantage of the numerical solution produced is that time dependence

can quite easily be added to the volatility term. One simply must modify

the volatility term in equation 8 to be dependent on the time index, i, and

then recalculate the derivative values. Values for a European put-option were

calculated for three differenct cases of volatility: a sinusoidal volatility term, a

linear volatility term, and a step volatility term. The specific functions were:

σsin(i) = 0.2
√

2sin2(i/35)

σlinear(i) = 0.00001i+ 0.05

7



Figure 3: Put-Option values for sinusoidal, linear, and step volatility dependences.

σstep(i) = { 0 .025, i < 5000; 0.4, i ≥ 5000

These three cases were examined because each can reflect volatility condi-

tions under different time scales. A sinusoidal function was used because market

volatility tends to exhibit oscillatory behavior. A linear function was used be-

cause, in the intermediate term, market volatility can at times be observed to

increase or decrease steadily. The step function was used to reflect the short-

term jumps in volatility that tend to occur. Plots of put-option values for time

dependent volatilities are displayed in Figure 3.

In Figure 4, the differences between the constant volatility and the time

varying volatility solutions are displayed.

It can be seen from Figure 4 that time dependent volatilities dont strongly
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Figure 4: Differences between the constant volatility solution and time-dependent volatility

solutions.
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affect derivative prices at stock price values far from the strike price. This

is reasonable, as the most drastic change in the derivative price occurs when

one steps across the strike price. When volatility is higher, the probability of

crossing the strike price is higher, and when volatility is lower, the probability

of crossing the strike price is lower. Time varying volatility will therefore cause

large changes in the desirability of holding a derivative security, which causes

the difference in pricing.

6. Stochastic Volatility Time Dependence

One can use macroeconomic factors to predict changes in volatility and at-

tempt to fit these changes to a deterministic model; however any deterministic

models will only be valid for a short time frame. Changes in market volatility

can best be characterized by a stochastic process. Figure 5 shows a plot of the

standard deviations of the 21 day returns of the SPY ETF (a fund which seeks

to match the performance of the S&P 500 Index) from February of 1993 through

September of 2012, as well as the autocorrelation function for the series. The

value of the autocorrelation function, ρl at each lag, l, is given by:

ρl =
Cov(σt, σt−l)

V ar(σt)
(14)

The oscillatory autocorrelation function seems to indicate that volatility

tends to oscillate about some mean value. From the plot of the volatility it-

self, reversion to some mean value is also visible. This indicates that market

volatility could likely be fit to a stochastic mean reverting process: a process

which exhibits stochastic fluctuations as well as a deterministic reversion to a

mean.

The model used to describe this volatility is simply the Cox, Ingersoll, Ross

(CIR) mean reverting model for interest rates[3]. According to this model, the

volatility is described by:

dσ = θ(µ− σ)dt+ ν
√
σdB (15)
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Figure 5: Market volatility as calculated through standard deviations of the SPY return, and

the accompanying autocorrelation function.
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Figure 6: Sample Path for a CIR process with θ = 3, µ = 0.02, ν = 0.01, and σ0 = 0.03

The first term in this equation results in a deterministic return to the mean,

while the second term results in stochastic deviations from, or reversions to, the

mean. The θ term is the logarithmic velocity of reversion to the mean, µ, while

dB is a Brownian Motion term, and ν is a standard deviation.

A sample path for this process is displayed in Figure 6. Sample paths gen-

erated according to this process tend to be less noisy than the SPY volatility,

and also lack the dramatic spiking behavior, indicating that the model must be

improved.

7. Black Scholes with Stochastic Volatility

Starting with the volatility model presented in equation 15, and assuming

the price of a stock is an unknown function of this volatility, a Taylor expansion

yields:

dS =
∂S

∂σ
dσ +

∂S

∂t
dt+

1

2

∂2S

∂σ2
(dσ)2 +

∂2S

∂σ∂t
dσdt+

1

2

∂2S

∂t2
(dt)2 + ... (16)
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Squaring equation 15 for d gives:

(dσ)2 = θ(µ− σ)dt2 + ν2σ(dB)2 + 2θν(µ− σ)
√
σdBdt (17)

Because dB is of order
√
dt, the dBdt term can be omitted, along with the

dt2 term. It can be shown that the expectation value of dB2 is dt, and its

variance is of order dt2. The dB2 term is therefore approximately equal to dt.

Making this substitution, omitting higher order terms, and inserting equation

17 into 16 yields:

dS =

[
∂S

∂σ
θ(µ− σ) +

∂S

∂t
+

1

2
ν2σ

∂2S

∂σ2

]
dt+ ν

√
σ
∂S

∂σ
dB (18)

Now we assume the value of a derivative, V, is a function of this stock price,

and Taylor expand to obtain:

dV =
∂V

∂S
dS +

∂V

∂t
dt+

1

2

∂2V

∂S2
(dS)2 +

1

2

∂2V

∂t2
(dt)2 +

∂2V

∂S∂t
dSdt+ ... (19)

Where the dS2 term is given by:

(dS)2 = ν2σ(
∂S

∂σ
)2(dB)2 = ν2σ(

∂S

∂σ
)2dt (20)

Inserting equation 20 into equation 19 and omitting higher order terms gives:

dV =

[
∂V

∂S

∂S

∂σ
θ(µ− σ) +

∂V

∂S

∂S

∂t
+
∂V

∂t
+

1

2
ν2σ

(
∂V

∂S

∂2S

∂σ2
+
∂2V

∂S2
(
∂S

∂σ
)2
)]

dt+ν
√
σ
∂V

∂S

∂S

∂σ
dB

(21)

We now construct the exact same portfolio considered in section two, wherein

we buy a number of shares of stock equal to the derivative of the derivative

security′s value with respect to the underlying stock, and sell a derivative secu-

rity. The differential value of this portfolio is given by:

dX =
∂V

∂S
dS − dV (22)

Inserting in the previously determined equations for dS and dV gives:

dX =

(
−∂V
∂t
− 1

2
ν2σ

∂2V

∂S2

(
∂S

∂σ

)2
)
dt (23)
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Once again, the stochastic term cancels, so the portfolio must evolve expo-

nentially at the risk free rate. Equating equation 22 with the differential value

of a risk free portfolio as given in equation 6 yields:(
−∂V
∂t
− 1

2
ν2σ

∂2V

∂S2

(
∂S

∂σ

)2
)
dt = r

(
S
∂V

∂S
− V

)
dt (24)

Cancelling terms gives:

rV =
∂V

∂t
+ rS

∂V

∂S
+

1

2
ν2σ

∂2V

∂S2

(
∂S

∂σ

)2

(25)

Equation 25 is a deterministic partial differential equation describing the

value of a derivative security for which the underlying asset is subject to a

volatility described by a CIR process.

A numerical solution to this equation was constructed using the same method

used in section 3. A plot of the solution, along with the difference between the

constant volatility solution and the stochastic volatility solution is presented

in Figure 7. The solution shows the value of the derivative along a path of

fixed volatility. It can be seen that the stochastic volatility solution predicts a

smaller value for put options than the constant volatility solution. This would

mean that investors typically overpay for these put options, and that the fair

value may be slightly less than the market value. This is reasonable, as an asset

with varying volatility is a riskier asset than an asset with fixed volatility. An

investor in a riskier asset would require a higher expected return, and would

therefore place less value on the riskier asset. Because an option subject to

stochastic volatility is more risky than a constant volatility option, the option

with stochastic volatility will not be priced as high.

8. Conclusion

Methods for the pricing of options under the more realistic assumption of

time varying volatility have been presented. A method for inserting determin-

istic volatility time dependence into the Black-Scholes equation is presented,

and shows that the path along which the volatility evolves in time can cause
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Figure 7: Stochastic volatility put-option value, and its difference from constant volatility

value, along the solution with σ =0.1 at each point, K = 55 price units, r = 0.03 per time

unit, ν = 0.001.
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changes in a derivatives fair value. Typically institutional investors will forecast

volatility conditions at a derivatives expiration, and use this volatility forecast

to price the derivative. However, it has been shown that in order to obtain a

more fair value for the derivative, investors must also forecast the path which

the volatility will follow to reach its final value.

The effects of a stochastic mean reverting model for volatility have also been

shown to cause a change in the fair price of a derivative. Using the principle that

there can be no guaranteed riskless profits, a formula has been derived to value

a derivative on an asset subject to such a stochastic mean reverting volatility.

The solution of this formula for a put option shows that investors typically over

pay for put options, as they fail to take into account the risk that volatility will

change.
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