

Contents

Acknowledgments iii

List of Figures v

List of Tables vi

Abstract v

1 Introduction 1

2 Software 6

2.1 Organization . 6

2.1.1 File types . 7

2.1.2 File responsibilities . 8

2.2 Version Control and Documentation 9

2.3 Automated Quality Control . 11

2.4 Software Improvements . 12

2.4.1 Verification . 13

2.5 Python . 17

2.6 Save Conversion . 18

2.6.1 The save process . 18

2.6.2 Building a save converter . 20

i

2.6.3 The template injection method 21

3 Hardware 23

3.1 Motivation and Concept . 23

3.2 Metrics . 24

3.3 Experiments . 26

3.3.1 Intrachannel jitter . 27

3.3.2 Long-term intrachannel jitter 29

3.3.3 Interchannel jitter . 31

3.3.4 New equipment . 32

3.4 Discussion . 33

4 Summary and Outlook 37

4.1 Summary . 37

4.2 Future Work . 37

A adwinGUI 39

A.1 User Guide . 39

A.1.1 Menu Bar . 39

A.1.2 Page Buttons . 41

A.1.3 Analog and Digital Tables . 41

A.1.4 Scan Values Table . 41

A.1.5 Usage Notes . 41

References 42

ii

Acknowledgments

I would like to thank my research advisor Dr. Seth Aubin for his assistance and guid-

ance throughout the course of this project. Without his help, this project would not

have been possible. I would also like to thank fellow members of the lab Stephen

Rosene, Morgan Logsdon, and William Miyahira for their support and company

through tranquil and trying times alike.

iii

List of Figures

1.1 Photo of ADwin-Pro II sequencer. 2

1.2 Overview diagram of the sequencer setup. 3

1.3 Screenshot of original control software 5

2.1 Diagram of program flow. 7

2.2 An example of code deduplication. 13

2.3 Screenshot of new control software 14

2.4 Diagram of development workflow. 16

2.5 Screenshot of Python control software 18

2.6 Screenshot of external channel simulation. 19

2.7 Diagram of a repository branch . 20

2.8 Comparison of injected save file and the template 22

3.1 Flow diagram of ADwin system state 24

3.2 Oscilloscope screenshot confirming 10 µs cycle time 25

3.3 Example of intrachannel jitter . 26

3.4 Diagram of the experimental setup to measure intrachannel jitter. . . 28

3.5 Timing diagram of the experiment to measure intrachannel jitter. . . 28

3.6 Plot and residues of time offset . 29

3.7 Long-term intrachannel jitter . 30

3.8 Diagram of the internal layout of the ADwin’s digital channels. 32

iv

3.9 Plot of interchannel latencies . 34

3.10 Plot of interchannel jitters . 35

3.11 Latency spectrum . 35

3.12 Comparison between waveform and delay generators 36

v

List of Tables

2.1 Comparison between capabilities of original versus improved software 15

3.1 Number of trials performed at each timescale 27

3.2 Summary statistics for long-term measurements of intrachannel time

stability. 31

vi

Abstract

Ultracold atomic systems have achieved unprecedented precision in control of atoms

for quantum sensing, such as in atom interferometers. This quantum control opens up

applications that require extremely precise measurements, e.g. gravity sensing. How-

ever, these ultracold systems require their own complex experimental control systems.

In order to control our ultracold apparatus, more than 70 devices must be triggered

with microsecond-level precision timing, which is currently handled by an ADwin

sequencer. This sequencer receives commands from software running on a connected

computer. This thesis describes work to expand and improve this sequencer. We mod-

ified the software to accommodate 40 analog channels, 64 digital channels, and 280

events per channel. We demonstrated the ability to extend the program using Python

add-ons by adding channel simulation functionality. Additionally, we increased the

timing precision and accuracy of the ADwin sequencer by replacing its internal clock

with an external atomic clock signal. We successfully modified the existing sequencer

program to reference an external 100 kHz trigger signal and decreased intrachannel

jitter from 740 ns to 60 ns. We measured interchannel latency and jitter between

different channels and confirmed that the latency did not exceed 15 ns and the jitter

did not exceed 25 ns. We tested several wave generators and delay generators in our

timing tests and concluded they did not have a significant impact on the ADwin’s

observed performance.

Chapter 1

Introduction

Bose-Einstein Condensates (BECs) were first experimentally created in 1995 [1] by a

team at JILA (Boulder, CO), for which they were awarded the 2001 Nobel Prize in

Physics. Since then, research into BECs and ultracold atoms has developed rapidly.

One property of BECs of interest is that they can manifest quantum effects, such

as wave-particle duality, on a macroscopic scale. These quantum effects have di-

rect applications in fields such as quantum computing and atom interferometry. In

particular, atomic waves are much more sensitive to gravity than light waves, due

to their mass, and propagate at much lower velocities allowing longer integration

times. Exploiting this fact, an atom interferometer can deliver unmatched precision

in tasks such as measurements of local gravitational fields [2]. The Aubin lab conducts

research into spin-dependent trapped atom interferometry using an ultracold atom

apparatus, which creates BECs via a number of cooling steps. The cooling process

begins by Doppler-cooling 87Rb in a magneto-optical trap (MOT), and finishes with

RF evaporative cooling in a micromagnetic trap on an atom chip. The MOT uses

three pairs of counter-propagating lasers, one for each axis, as well as a pair of coils

arranged in an anti-Helmholtz configuration to collect and cool over 5×108 rubidium

atoms from room temperature to 30 µK with a cycle time of about 40 seconds [3].

The Aubin lab is interested in using tightly-grouped traces on small printed circuit

1

Figure 1.1: Photo of ADwin-Pro II sequencer.

boards, referred to as “atom chips”, to create magnetic trapping potentials. In every

step of the process, the numerous devices in play must all be coordinated down to

the microsecond level. This is accomplished with the ADwin-Pro II sequencer (Jäger

Computergesteuerte Messtechnik GmbH), which can be programmed using software

developed in-house. A photo of the ADwin-Pro II is shown in Figure 1.1. However, as

experiments grow in complexity, limitations in the present software and hardware are

becoming apparent. An overview of the experimental setup is presented in Figure 1.2.

The ADwin-Pro II sequencer that the Aubin lab currently uses is capable of sup-

porting up to 15 expansion cards, each of which can house either 8 analog (-10 to

+10 V) or 32 digital (~3.5 V TTL) inputs or outputs. This project includes both

software and hardware upgrades to this sequencer. Currently, the sequencer has 4

analog and 2 digital cards, for a combined total of 32 analog outputs and 64 digital

outputs. However, due to software limitations, only 32 lines of each type can be con-

trolled at the same time. Expanding the number of control lines is nontrivial, as these

2

Figure 1.2: Overview diagram of the sequencer setup.

numbers were hardcoded when the program was originally written1. A screenshot of

the original control software is shown in Figure 1.3. The most pressing objective of

this project is to expand the software so the full capability of the sequencer can be

utilized. This would also open the way for additional expansion cards in the future.

In addition, more features have been requested for the control software. One

requested feature is channel simulation, where output voltages for channels are cal-

culated and plotted on a graph without being sent to the ADwin. This can assist

with data visualization and troubleshooting without the need to be connected to the

lab apparatus. Implementing these features would make the software more useful for

designing and running experiments.

On the hardware side, new experiments require increasingly precise timing. The

ADwin-Pro II is equipped with a T11 processor module running at 300 MHz, how-

ever its timing precision and accuracy is inadequate for future atom interferometry

1The original software was developed by Dr. Stefan Myrskog in the Thywissen group at the
University of Toronto. This software has been improved by a number of researchers.

3

experiments. Integrating the lab’s atomic clock signal with the sequencer would allow

increased timing precision without the need to invest in new equipment.

This thesis describes work on the objectives described above. Chapter 2 dis-

cusses the control software’s codebase and our improvements. Chapter 3 presents

our hardware modifications to the apparatus and their effects on the ADwin’s timing

performance. Finally, Chapter 4 concludes with a summary and brief outlook on

possible future work.

4

Figure 1.3: Screenshot of the GUI for the original control software. The main in-
terface is split between analog channels above and digital channels below. Each row
represents a single channel and each column represents a user-defined duration. But-
tons at the top allow users to switch between pages, which are executed sequentially.
Colors represent on/off state for digital channels and function type for analog chan-
nels.

5

Chapter 2

Software

This chapter describes the work done to overhaul the codebase and also serves as a

reference for future work on the codebase.

2.1 Organization

The main part of the software project is the control software, a LabWindows/CVI

project written in C89 with some C99 extensions enabled. In addition, the project

also contains an ADbasic program that the control software uploads to the ADwin

and a Python program that provides plotting functionality. The project consists

of many files, with types and responsibilities as described below. The program be-

gins in main.c, which initializes variables and dynamically creates GUI elements.

The bulk of user interaction happens in GUIDesign.c, which is responsible for the

main interface. Additional user interfaces (such as settings windows) are called by

GUIDesign.c as required. When the user runs the panel, GUIDesign.c uses the

Adwin.c library provided by the manufacturer to upload the ADwin11.btl boot-

loader and the TransferDataExternalClock.TB1 program to the ADwin sequencer.

It then uploads the panel data into the ADwin’s memory and signals the bootloader

to start the program. TransferDataExternalClock.TB1 then reads the panel data

from the ADwin’s memory and begins execution. A diagram of this process is shown

6

in Figure 2.1.

GUIDesign

main

Adwin

ADwin11 TransferDataExternalClock

ScanTableLoader

scan

DigitalSettings

AnalogSettings

AnalogControl

pyreader

User Interfaces

Computer

ADwin Sequencer

Sets up interface

Handles user interactions

Passes data to library

Transmits programs and data

Starts program

Figure 2.1: Diagram of program flow.

2.1.1 File types

*.c Source code files. Contains the actual logic of the program.

*.h Header files. Contains function and variable declarations so code from one source

file can access code in another source file. Some of these are automatically

generated by LabWindows.

7

*.uir User interface resource files. Contains information on how to layout the user

interface elements on the screen.

*.bas ADbasic source code files. Contains instructions for the ADwin sequencer.

*.TB1 Compiled ADbasic binaries. To be loaded into the ADwin sequencer.

*.btl ADwin bootloader. Small program that manages other ADwin programs.

*.py Python scripts. Contains logic for Python programs.

2.1.2 File responsibilities

Adwin.* The library used to transmit programs and data from the control software

to the ADwin sequencer. Provided by the manufacturer.

ADwin11.btl Bootloader for the ADwin’s T11 processor. Provided by the manu-

facturer.

AnalogControl.* Interface for setting the type of analog signal to output in each

cell.

AnalogSettings.* Interface for naming and setting channel number for each row in

the analog table.

DigitalSettings.* Interface for naming and setting channel number for each row in

the digital table.

GUIDesign.* The main interface. Responsible for the analog and digital tables,

settings, saving/loading, and sending commands to the ADwin sequencer.

main.* Initial setup of variables, data structures, and runtime creation of user in-

terface elements.

8

scan.* Interface for setting analog and time scans.

ScanTableLoader.* Interface for populating the scan values table.

TransferData.* ADwin program that receives data from the control software and

manages the ADwin’s outputs. Two versions are available, one using the inter-

nal clock and one referencing an external signal.

vars.h Special header file containing definitions of macros, structs, and global vari-

ables.

2.2 Version Control and Documentation

While the primary goal of this project is to upgrade the software to support the needs

of current and future experiments, at the same time it is important to organize the

code and maintain correct and up-to-date documentation so that future work on the

software can avoid significant retreading of past work. Over the years, many different

versions of the program were backed up by saving them under new folders. The

folder names usually included the creation date and a short message regarding what

changes were made, though in some cases work continued after the listed date. There

are several issues with this approach. First, it is not immediately clear what the latest

version of the software is. Second, it is difficult to see what changes have been made

between versions and the reasons for the changes. Last, each time a new version is

saved, an entirely new copy of the program is created, which quickly takes up storage.

To solve these issues, the first task of the project was to establish a chronology of the

versions and enter them into a Git repository.

Git [4] is a version control tool widely used in software development to keep track

of files. A collection of files managed with Git is called a repository. As users make

changes to files in the repository, they can commit those changes. Commits save

9

changes incrementally, i.e. each commit only keeps track of what changed between

itself and the previous commit. Thus, using commits greatly reduce space require-

ments. In addition, each commit is labeled with a message and unique identifier,

ensuring that each change is documented and allowing for rollbacks to specific pre-

vious versions, which can help with debugging. Each version of the software was

committed into Git in chronological order, and as improvements were made they

were regularly committed as well. Repositories can also be easily cloned and stored

in multiple locations for data integrity. Commits to one repository can be pushed to

the others, keeping all of them up to date. Should one repository suffer a loss of data,

it can pull the commit history from another repository and rebuild itself1. We main-

tain three repositories: one on the computer’s hard drive, one on the lab’s network

storage server, and one on the repository hosting service GitHub. The repository is

publicly accessible on GitHub and can be found in Ref. [5].

Additionally, proper documentation of code is important to assist future work.

Originally, documentation was accomplished by leaving comments in the code, how-

ever it remains difficult to get a broad overview of the responsibilities of each file. By

rewriting comments to follow a specific format, Doxygen was used to generate doc-

umentation in HTML format. The generated documentation is indexed, searchable,

and includes hyperlinks for easy lookup of function and struct definitions. Using

GitHub Actions, this process was automated and triggers every time the GitHub

repository is updated. The full documentation is also available on GitHub and can

be found in Ref. [6].

1This comes from experience, as at one point the lab’s storage server did suffer a loss of data
while being updated. We restored the storage server’s repository from the other two and did not
lose any progress.

10

2.3 Automated Quality Control

At a combined total of over 4,500 lines of code, the codebase is sizable enough that it

would take a significant amount of time to review every line and check for bugs and

bad coding practices. This is especially important since the codebase has had many

developers over its nearly two decades of existence. Assumptions made by legacy code

may become invalid, causing parts of the program to fail over time. The most serious

problems can be caught by the C compiler, which will warn and fail to compile on

issues such as type mismatches and broken syntax. However, just because a program

compiles does not mean it is correct.

To check for deeper issues, we used Cppcheck, a static code analyzer. In addition

to simply checking for code validity, it also checks for valid but potentially dangerous

code, such as accessing a variable after it is declared but before it is assigned a value

or suspected misuse of the assignment(=) operator where the comparison(==) operator

was intended2. Use of automated code analyzers helped fix dubious code before they

manifested as bugs.

Lastly, code style is the subject of many a debate in the programming world. The

C language ignores most whitespace characters, so spacing such as indentation and

line breaks are up to individual preference3. In principle, one could remove every

line break from the codebase to fit the entire program on a single line of code. This,

while impressive, would also make for a spectacularly unreadable and unmaintainable

codebase. Inconsistent styles may lead to confusion of whether a line of code is inside

or outside a loop, or where one function definition ends and another begins. To solve

this, we used clang-format, a code formatting tool, to automatically format our code

2Both if(a=b) and if(a==b) are valid statements in C, with dramatically different meanings.
The latter checks if a and b are equal, while the former assigns the value of b to a and then checks
if a is nonzero. This is a typo that even experienced programmers may overlook.

3This property of C has been used (and abused) to create text art that are also valid programs.
See https://www.ioccc.org/2015/burton/prog.c for one particularly impressive example.

11

https://www.ioccc.org/2015/burton/prog.c

in a consistent style. clang-format supports a number of styles corresponding to major

style guides; we chose Google’s style guide for its strictness and completeness. The

Google style guide can be found in Reference [7].

2.4 Software Improvements

A significant amount of work was spent on removing broken or obsolete code and

rewriting it to make the code more readable while maintaining its functionality. Be-

tween the start of this project and the most recent commit, 5,103 lines of code were

added while 18,502 lines were modified or deleted4.

One major obstacle was the way the original program handled repeated elements.

For example, to change the page, clicking the first button called a function to change

to the first page, the second button called a separate but nearly identical function

to change to the second page, and so on. In this way, many parameters of the

software were hardcoded, and expansion was nontrivial. This was solved by code

deduplication. Instead of having separate functions to perform nearly identical tasks,

they were replaced by a single function that is aware of its context. For example,

all the page-changing buttons now call a single function, which detects which button

was clicked and changes to that corresponding page. This example is illustrated in

Figure 2.2. In addition to deduplicating code and making it easier to read, this

approach also makes the code easy to expand, as increasing the number of elements

(buttons, table rows/columns, etc.) no longer increases the amount of code.

However, the layout of user interface elements was still hardcoded into the .uir

files. Increasing the number of pages would require manually editing the resource

4https://github.com/tecnd/adwinGUI/compare/8c313b5...adwingui-v1.0.0 While the ac-
tual commit for the start of this project is fe56ca9, a later commit, 8c313b5, was chosen to make
this comparison due to the fact that a related but now retired project was also included with the
original files, along with a full copy of its manufacturer documentation and sample code. That
project’s removal greatly inflates the numbers — up to 5,129 additions and 767,476 deletions!

12

https://github.com/tecnd/adwinGUI/compare/8c313b5...adwingui-v1.0.0

Button 1 Button 2 Button 3

Page1() Page2() Page3()

(a) Before

Button 1 Button 2 Button 3

Page(n)

(b) After

Figure 2.2: An example of code deduplication.

file to add another button. Fortunately, LabWindows allows for modification of the

user interface during runtime. This means that elements can be created and moved

through code. Leveraging this ability, the existing layout was removed and instead

a variable amount of elements are created and positioned when the program starts.

Following all of these changes, the number of pages, analog channels, digital channels,

and number of columns per page can all be changed by altering the corresponding

compiler define, with no code required. A summary of original and improved ca-

pabilities is listed in Table 2.1, and a screenshot of the new interface can be found

in Figure 2.3. Our chosen values reflect our expectations for future expansion; the

parameters can be further increased to support any configuration of the ADwin-Pro

II sequencer.

2.4.1 Verification

Before changes are committed to the codebase, we must verify that the changes do not

introduce errors into the program. The first lines of defense are the compiler and static

13

Figure 2.3: Screenshot of new control software. The original layout has been mostly
preserved. Unused and obsolete elements were removed to make space for more pages
and columns. The figure has been truncated to fit on the page.

14

Original Improved
Analog channels 32 40*
Digital channels 32 64
Pages 10 14
Columns per page 17 20
Total events per channel 170 280

Table 2.1: Comparison between capabilities of original versus improved software.
* While the software can control up to 40 analog channels, only 32 channels are
currently available in hardware.

code analyzer, as discussed in Section 2.3. Afterwards, to ensure that modifications

to the software did not break existing functionality, we perform a simple test of

opening and closing a shutter. At major milestones, we fully verify the functionality

of the software by loading and running a procedure to generate a BEC. After these

tests pass, changes are committed and pushed to the repositories, which also triggers

Doxygen to generate new documentation. Figure 2.4 shows a flowchart summarizing

the development workflow.

15

Make changes

Compiles?

Passes code
analysis?

Format code

Commit and push to repositories

Generate documentation

No

No

Yes

Yes

Passes tests?

Yes

No

Figure 2.4: Diagram of development workflow.

16

2.5 Python

The requirement for fixed-size data structures in C makes working with variable-

sized data difficult. While we have found workarounds so far, such as overestimating

size requirements when allocating arrays and storing their actual size separately, this

approach can only get us so far. In order to implement more features geared towards

data analysis, like channel simulation and plotting, we must choose a more suitable

language for the task. Moving away from LabWindows also reduces our reliance on

proprietary software licences. Python is a favorite in the data science industry for

its flexibility in data structures, and has a diverse open-source community. We chose

DearPyGUI as our user interface library for its simplicity of use.

One potential approach was to completely rewrite the program in Python. This

would allow us to fully take advantage of Python’s convenience features such as

variable-length strings as well as fully decoupling from LabWindows. We trialed

this approach, however we deemed that replicating every feature of the LabWindows

program in Python was nontrivial and would take a significant amount of time. A

screenshot of a prototype is shown in Figure 2.5.

To avoid duplication of effort in creating a replacement from the ground up, we

opted to use Python in a supplementary role. When prompted, the main LabWindows

program encodes and writes its current state into a text file. Any Python add-on

programs can then parse the text file and use the data in whatever way it wishes.

This allows us to leverage Python’s strengths for new features while not throwing

away code that already works. This approach also allows for development of add-

ons without needing knowledge of how the LabWindows program works, significantly

lowering the barrier of entry. We used this method to add digital channel plotting as

a Python add-on, a screenshot of which can be found in Figure 2.6.

17

Figure 2.5: Screenshot of Python control software. Figure has been truncated to fit.

2.6 Save Conversion

Due to the way the program saves and loads experiments, as development progressed

there came a point where save files generated before a certain version could not be

loaded in newer versions. The Aubin lab has many saved experiments created with old

versions of the software, and while it is possible to manually recreate old experiments

in the new software, a save converter to make the old save files compatible with the

new software is desirable.

2.6.1 The save process

Saving an experiment from the control software results in the creation of two files: a

.pan file and a .arr file. Both are required to successfully load a saved experiment.

Normally, LabWindows provides a built-in function to save and load the state of

a program to and from a file. However, this only partially satisfies our needs. The

18

Figure 2.6: Screenshot of external channel simulation.

LabWindows save function simply records the value of every user interface component

in a proprietary .pan file format, and the load function restores those values.

For simple values, such as the names of the pages and the list of what pages

are active, this works fine. However, for more complex data structures such as the

analog and digital channel tables, the user interface components only serve as a way

to interface with the underlying data arrays. The built-in save and load functions do

not work for these values. To compensate, the software writes a second file: the .arr

file, containing the binary representations of the arrays. Since we know the size of the

arrays and the order they were written to the file, we can simply read the contents

directly back into memory to load the arrays. The former assumes the contents of the

panel do not change, while the latter assumes the size of the arrays do not change.

So when we switched to generating panel components at runtime and increased the

number of columns, channels, and pages, both of these processes broke down.

19

2.6.2 Building a save converter

To build a tool that can make old saves usable again, we first need something that can

read the old saves. We rolled back through the repository’s commit history until we

found the final version before save compatibility was lost. We then used this as a base

by creating a branch: commits only have one parent, but can have many children. By

creating a branch, we essentially keep the history of the codebase up to the point of

divergence but allow us to take it in a different direction. Figure 2.7 shows a diagram

of a branched repository.

last-compat main

save-converter

Figure 2.7: Diagram of a repository branch. last-compat represents the last commit
that is compatible with the old save format, main represents the main branch of devel-
opment, and save-converter represents the save converter’s branch of development.

On this branch, we reduced the program to a minimum file loader. Everything not

needed to load a save file was removed. We then needed to have it output files that

the new versions on the main branch could read. For the .arr file, since we already

know what sizes of arrays and in what order the program expects, we could create the

same sized arrays, copy over the array data, and write them in the expected order.

However, the .pan file is a proprietary format and required additional work.

20

2.6.3 The template injection method

We suspected that the .pan file was a binary file format. This was confirmed by

opening the file in a hex editor and looking for saved label and page names. In

addition, we noted that as long as all page names and labels had eight characters

or less, the sizes of the .pan files remained the same, down to the byte5. This

suggested that the value of each component was being assigned an address in the file

to read and write to. Since the loading function has to restore each component to

its saved value, the way these address were assigned must be deterministic, i.e. a

component will receive the same address every time. We used this to our advantage

by creating a “template” save file using the new software with every label set to an

eight-character marker, for example “DESC0102” for the description label on the first

page for the second column. We then noted the address of each saved value. Finally,

to create a compatible .pan file, we would make a copy of the template, seek to

the relevant addresses, and inject the corresponding values from the loaded old save,

overwriting the marker. Figure 2.8 showcases a comparison of an injected save file

with the template. The software would then dutifully load the altered labels from

each address into its corresponding component. Using this method, we were able to

reverse-engineer the .pan format to convert old saves into a format compatible with

the new software. This method should remain viable should the panel layout change

and break save compatibility again in the future.

5Having any string longer than eight characters caused another eight bytes to be allocated to it,
shifting every subsequent location by eight bytes.

21

Figure 2.8: Comparison of injected save file (bottom) and the template (top) in a hex
editor. Differing bytes are highlighted in red.

22

Chapter 3

Hardware

This chapter presents a comparison of the ADwin sequencer’s timing properties with

and without the use of an external reference clock. We discuss the motivation behind

adding an external reference clock to the ADwin sequencer and experiments to detect

improvements in the sequencer’s timing properties. Our results are summarized at

the end of the chapter.

3.1 Motivation and Concept

As experiments grow in complexity, and in particular for those involving time domain

quantum interference, it becomes crucial that we have precise control over when events

happen. While the ADwin sequencer is sufficient for millisecond-accurate signaling in

experiments lasting on the order of several seconds, we are interested in microsecond-

and even sub-microsecond-level timekeeping that is stable over multiple hours. The

Aubin lab already has devices capable of keeping time to the accuracy we require, but

none can control as many devices as the ADwin. The most straightforward solution is

to have the ADwin sequencer reference a high-accuracy external clock signal instead

of its internal clock.

While there is no direct way to replace the internal clock, the ADwin is equipped

with an external trigger input. The ADwin supports an alternate execution mode

23

where the internal clock is ignored and code instead executes on an external trigger

signal. We modified the sequencer code so that instead of relying on the internal clock

to keep time, it directly counts the number of external trigger signals. A diagram

comparing the two modes is shown in Figure 3.1. We then connected a function

generator (Siglent SDG5122 Waveform Generator) to the lab’s 10 MHz reference

clock (Stanford Research Systems PRS10 Rubidium Standard) and generated a 100

kHz square wave as the trigger signal. At 100 kHz, the modified ADwin should be

capable of updating its outputs as fast as once every 10 µs. We verified this by

generating a 50 kHz square wave from the ADwin. Figure 3.2 shows a screenshot

from the oscilloscope used to confirm the cycle time.

Figure 3.1: Flow diagram of ADwin system state a) using the internal clock and b)
after modifications to use an external signal.

3.2 Metrics

We judge the ADwin’s timing properties based on several metrics. First, the ADwin

must keep consistent time. That is, every second should be the same length. For

24

Figure 3.2: Oscilloscope screenshot confirming 10 µs cycle time for the ADwin se-
quencer triggered by the external clock.

example, if the ADwin and a known good clock are both set to output a pulse one

second after receiving a trigger signal, any differences between the two will cause the

pulses to arrive at slightly different times. We call the time delay between ideally

simultaneous events latency. Over many trials, the latency between the two pulses

should remain constant. However, no clock is perfect, and the latency will always vary

from trial to trial. We call this variation intrachannel jitter. With low intrachannel

jitter, the ADwin can be synchronized to the known good clock via a constant scale

factor. Figure 3.3 shows an example of intrachannel jitter.

Second, the ADwin must be consistent between its channels. For example, if two

different channels are set to switch from low to high at the same time, the latency

between one channel going high and the other should be consistent and minimal,

ideally on the order of nanoseconds. For the same reasons as above, the latency will

25

Figure 3.3: Example of intrachannel jitter. The oscilloscope is triggered on the ref-
erence clock (yellow). Traces were set to persist, showing the jitter between the
reference clock and the ADwin (blue).

vary from trial to trial. We call this variation interchannel jitter. High interchannel

latency would indicate the inability to coordinate between devices and will cause

inconsistent experimental results. We are also interested if these values depend on

the choice of channels.

3.3 Experiments

We conducted three experiments to measure the ADwin’s timing properties. First,

we measured the ADwin’s intrachannel jitter by comparing it to the lab’s 10 MHz

rubidium standard. We measured the average intrachannel latency for various ex-

periment durations and evaluated if there was a linear relationship between latency

and duration. Next, we characterized the long-term jitter behavior by recording the

latency over several hours. We analyzed interchannel latencies and jitters for a va-

riety of channel pairs. Last, we investigated the impact of new equipment on the

apparatus.

26

3.3.1 Intrachannel jitter

In this experiment, we measured the intrachannel latency of the ADwin by comparing

it against a trusted reference clock. We calculated the intrachannel jitter by conduct-

ing multiple trials and taking the difference of the maximum and minimum latencies.

We collected data at multiple timescales from t = 0.1 ms to 10 s. The number of

trials performed at each timescale can be found in Table 3.1.

Timescale Number of trials
≤ 1 s 100
2 s 50
5 s 25
10 s 20

Table 3.1: Number of trials performed at each timescale

We used a Stanford Research Systems DG535 delay generator clocked by the lab’s

10 MHz rubidium standard as our reference. The DG535 was set up to wait for a

trigger signal, wait for a set time t, and output a pulse. The ADwin was configured

to output two signals. First, it would output a pulse at the start of the experiment

to trigger the delay generator. Then the ADwin would also wait and output a signal

at time t. The ADwin and the delay generator were both connected to a Siglent

SDS1104X-E oscilloscope to measure and record the latency between the two signals.

To avoid the second ADwin signal triggering the delay generator again, each ADwin

signal was sent on its own channel. A diagram of the experiment setup is shown in

Figure 3.4 with the timing diagram shown in Figure 3.5. We conducted the experiment

twice, once with the original software using the ADwin’s internal clock and once with

our modifications using the external trigger signal. The ADwin trigger signal was

a 100 kHz square wave generated by a Siglent SDG5122 waveform generator also

connected to the rubidium standard.

We plotted the collected data against time (see Figure 3.6) and found both trials

27

Figure 3.4: Diagram of the experimental setup to measure intrachannel jitter.

Figure 3.5: Timing diagram of the experiment to measure intrachannel jitter.

to be linear, indicating that the clocks were operating normally. We then performed

a linear regression to find the clock drift relative to the lab’s reference clock. Our

results show that the original configuration exhibits a clock timing difference of 5.895

ppm compared to the reference, or around 500 ms per day, and an intrachannel jitter

of less than 150 ns. Our modifications greatly improve on this with a drift of 0.08939

ppb compared to the reference, or 7.723 µs per day, and an intrachannel jitter of less

than 40 ns.

28

Figure 3.6: Plot and residues of the measured time offset between the ADwin and
DG535. The markers represent the means, while the error bars represent the max-
imums and minimums. The fit equation for the original and modified trials are
y = 5.895t− 1.546× 102 and y = 8.939× 10−5t− 1.121× 102, respectively. While the
fit lines are linear, they appear curved in the plot due to the logarithmic scaling.

3.3.2 Long-term intrachannel jitter

As a follow-up experiment, we measured the ADwin’s long-term clock stability by

repeating trials at timescale t = 10 s for multiple hours. We collected 1039 (∼ 3

hours) and 697 (∼ 2 hours) samples on two different days using the ADwin’s internal

clock. For comparison, we also recorded 435 (∼ 72 minutes) samples using the external

trigger. We hypothesized that over long periods of time, the ADwin’s internal clock

may wander with respect to the reference clock, resulting in greater interchannel jitter

than short-term tests may reveal.

As can be seen from Figure 3.7, the ADwin’s internal clock displays a tendency to

wander over long periods. While our previous results suggest that the internal clock

has a intrachannel jitter of under 150 ns, these longer measurements have ranges

of 690 ns and 740 ns. Meanwhile, the measurement using the external trigger did

29

not demonstrate any wandering behavior and has a range of 60 ns. More detailed

summary statistics are shown in Table 3.2.

Figure 3.7: Long-term intrachannel jitter from a three-hour (top left) and a two-
hour (top right) measurement using the internal clock and a 72-minute measurement
(bottom) using the external trigger.

30

Clock Samples Mean Maximum Minimum Range Std. Deviation
Internal 1039 59.202 µs 59.524 µs 58.833 µs 690 ns 158 ns
Internal 697 59.470 µs 59.887 µs 59.147 µs 740 ns 225 ns
External 435 104.90 ns 134 ns 74 ns 60 ns 9.5 ns

Table 3.2: Summary statistics for long-term measurements of intrachannel time sta-
bility.

3.3.3 Interchannel jitter

To test the interchannel jitter, we connected two channels from the ADwin to the

oscilloscope and set them to simultaneously switch from low to high. We then mea-

sured the latency between the two signals and calculated the jitter. Our current

ADwin configuration has two digital cards, each controlling a bank of 32 channels,

as well as many analog outputs; we tested the latency between digital channels on

the same bank, digital channels on different banks, and between analog and digital

cards. In addition, each bank houses 4 independent circuits, each responsible for a

group of 8 channels, so we also tested between digital channels from the same circuit

and from different circuits. A diagram of the internal organization of the ADwin’s

digital channels is shown in Figure 3.8. Each test was repeated for 500 trials, and the

results are plotted in Figure 3.9. For all but one test one of the signals consistently

arrived before the other; for those we calculated the latency as tafter − tbefore to get

strictly positive values. However, when testing between the digital banks, there was

no such consistency. In this case, we calculated the latency as tbank1 − tbank2, which

results in negative values when the signal from bank 1 arrives earlier than the signal

from bank 2. We then calculated the interchannel jitter as the difference between the

maximum and minimum recorded latencies. A plot of the interchannel jitters can be

found in Figure 3.10. To quickly check if different pairs of channels from the same

circuit had different latencies, 10 samples were taken from channel 32 to each other

31

channel from the same circuit for each bank. The results are shown in Figure 3.11.

Figure 3.8: Diagram of the internal layout of the ADwin’s digital channels.

Our results show that while the choice of channels does have an effect on inter-

channel latency and jitter, for strictly digital channels the effect is not significant at

the microsecond-level. The latency between channels on the same bank is under 5

ns and the jitter is even less. There is only a small penalty of a few nanoseconds at

most for channels from different circuits on the same bank. Across banks, the penalty

is more severe but absolute latency is under 15 ns and jitter is under 25 ns. While

the jitter between analog and digital signals is comfortably below 40 ns, we cannot

recommend using analog channels for digital signalling due to its 500 ns latency.

3.3.4 New equipment

Last, we investigated if the jitter could be further reduced by improving the external

clock. The Siglent SDG5122 datasheet claims a square wave jitter of ≤ 200 ps [8],

while the Agilent 33521A claims a square wave jitter of < 40 ps [9]. The Siglent

SDG6022X is a waveform generator that can also act as a delay generator. The

DG535 has an 85 ns trigger delay [10], while the SDG6022X does not. We ran four

experiments, one for each possible combination of waveform and delay generator. For

each, we measured the intrachannel latency of the ADwin and looked for changes in

32

the jitter. The results are plotted in Figure 3.12.

From our results, we conclude that there are no significant benefits to be gained

from upgrading the waveform generator. While the DG535 has a latency floor at 85

ns due to its trigger delay, it retains the same amount of jitter as the SDG6022X.

This signifies that the jitter is likely due to the ADwin itself rather than being from

the delay generator. An interesting result is the discretization of latency values inde-

pendent of the combination of external equipment used. This behavior suggests that

the discretization is coming from the ADwin itself.

3.4 Discussion

With these results, we conclude that our modifications to the ADwin successfully

enabled it to use an external clock signal. Using the lab’s reference signal instead of

the ADwin’s internal clock reduced intrachannel jitter by an order of magnitude, from

hundreds down to tens of nanoseconds. Interchannel latencies between digital chan-

nels remained low, under 15 ns for our worst result, and jitter did not exceed 40 ns,

indicating that the modified ADwin is capable of microsecond and sub-microsecond

timing tasks.

33

Figure 3.9: Plot of the latencies between different channels (top) and a zoomed in
version excluding Analog-Digital (bottom).

34

Figure 3.10: Plot of the jitters between different channels.

Figure 3.11: Plot of latencies between channel 32 from each bank and a spectrum of
channels on the same bank. Channel 18 on bank 2 is managed by a different chip,
but no other channels on bank 1 were free so no corresponding measurement could
be made.

35

Figure 3.12: Plot of intrachannel latencies for combinations of waveform and delay
generators.

36

Chapter 4

Summary and Outlook

4.1 Summary

Over the course of this project, we successfully upgraded the control software to sup-

port 40 analog and 64 digital channels, and the code can easily be modified to expand

further. We also cleaned up and organized the codebase and wrote documentation

to aid in future work on the control software. We established a framework for creat-

ing add-on programs and created a channel plotter add-on in Python as a proof of

concept.

We also integrated an atomic clock with the ADwin sequencer, which decreased

intrachannel jitter from 740 nanoseconds to 60 nanoseconds. We characterized the in-

terchannel jitter between many channel sources and determined that the interchannel

jitter between digital channels was acceptable for microsecond-precision timing.

4.2 Future Work

While we achieved most of our stated objectives, there remain many possibilities for

future work. First, the channel plotting Python add-on can be expanded to also plot

analog channels. The ADwin control software can be expanded to trigger other lab

devices in concert with the ADwin. Last, work can be done to isolate and remove

37

the source of latency discretization from the ADwin and measure if the intrachannel

jitter improves.

38

Appendix A

adwinGUI

Developer documentation can be found at https://tecnd.github.io/adwinGUI/1.

A.1 User Guide

A.1.1 Menu Bar

• File

– Load Parameters - Loads panel from a .pan/.arr pair. Both files must have

the same name and be in the same directory.

– Save Parameters - Saves panel to a .pan/.arr pair.

– Export Channel Config - Deprecated. Writes analog and digital channel

settings to a text file.

– Export Panel - Writes analog and digital cell values to a text file for use in

an external program. Skips columns with negative time. A column with a

time of zero marks the end of a page.

– Export Panel and Launch Python - Writes analog and digital cell values

to a temporary text file and opens it in the Python plotter.

– Exit - Exits the program.

• Settings

1<https://tecnd.github.io/adwinGUI/>

39

https://tecnd.github.io/adwinGUI/

– Analog Settings - Makes changes to analog lines, including channel num-

ber, name, units, and voltage limits. Must click Allow Changes to enable

editing and Set Changes for each line.

– Digital Settings - Makes changes to digital lines, including channel number

and name. Channels 1-32 refer to channels 1-32 on the first digital I/O

card (labeled 1-32), and channels 101-132 refer to channels 1-32 on the

second digital I/O card (labeled 33-64). Must click Allow Changes to

enable editing and Set Changes for each line.

– Reboot ADwin - Reuploads the ADwin program and bootloader to the

ADwin.

– Clear Panel - Resets all cells to zero.

– Scan Setup - Opens the scan setup panel.

• Edit

– Note: All of these require a cell in the time table to be selected.

– Insert Column - Inserts an empty column at the selected position. The

last column on the page will be lost.

– Delete Column - Deletes the column at the selected position and moves

the following columns to the left.

– Copy Column - Copies the column at the selected position.

– Paste Column - Pastes the column to the selected position.

• Preferences

– Use Compression - When generating ADwin tables, replace consecutive

zeros with a negative integer representing the number of zeros. Greatly

reduces the final size of the ADwin tables, leave on unless you have good

reason not to.

– Use Simple Timing - When calculating analog outputs, ignores the timescale

40

parameter and treats the full cell as the timescale. Leave on unless you

have good reason not to.

A.1.2 Page Buttons

• Right-click to rename the page.

A.1.3 Analog and Digital Tables

• Double-click to change the cell’s value. On the analog table, this opens a settings

window. On the digital table, this toggles the cell.

• Right-click → Copy - Copies the value of the highlighted cell.

• Right-click → Paste - Pastes the copied value into all highlighted cells.

A.1.4 Scan Values Table

• Right-click → Load Values to generate scan values.

A.1.5 Usage Notes

• For whatever reason, redrawing the GUI takes significant time while repeat

mode is active. This results in delays between cycles. This can be mitigated by

minimizing the interface to skip redrawing the GUI.

• On Windows, use Win+Shift+S to quickly take screengrabs.

41

References

[1] M. H. Anderson et al. “Observation of Bose-Einstein Condensation in a Di-
lute Atomic Vapor”. In: Science 269.5221 (1995), pp. 198–201. doi: 10.1126/
science.269.5221.198. url: https://www.science.org/doi/abs/10.
1126/science.269.5221.198.

[2] Susannah M. Dickerson et al. “Multiaxis Inertial Sensing with Long-Time Point
Source Atom Interferometry”. In: Phys. Rev. Lett. 111 (8 Aug. 2013), p. 083001.
doi: 10.1103/PhysRevLett.111.083001. url: https://link.aps.org/doi/
10.1103/PhysRevLett.111.083001.

[3] M. K. Ivory et al. “Atom chip apparatus for experiments with ultracold rubid-
ium and potassium gases”. In: Review of Scientific Instruments 85.4 (2014),
p. 043102. doi: 10.1063/1.4869781. url: https://doi.org/10.1063/1.
4869781.

[4] Linus Torvalds et al. Git. Version 2.36.1. May 5, 2022. url: https://git-
scm.com/.

[5] Kerry Wang and Seth Aubin. adwinGUI. url: https://github.com/tecnd/
adwinGUI.

[6] Kerry Wang. adwinGUI Documentation. url: https://tecnd.github.io/
adwinGUI/index.html.

[7] Google C++ Style Guide. Google. Oct. 2021. url: https://google.github.
io/styleguide/cppguide.html.

[8] Function/Arbitrary Waveform Generator SDG5000 Series. DS02050-E03C. Siglent
Technologies.

[9] 30 MHz Function/Arbitrary Waveform Generators. 5990-5914EN. Keysight Tech-
nologies. June 2021.

[10] Digital Delay/Pulse Generator. DG535c. Stanford Research Systems.

42

https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1126/science.269.5221.198
https://www.science.org/doi/abs/10.1126/science.269.5221.198
https://www.science.org/doi/abs/10.1126/science.269.5221.198
https://doi.org/10.1103/PhysRevLett.111.083001
https://link.aps.org/doi/10.1103/PhysRevLett.111.083001
https://link.aps.org/doi/10.1103/PhysRevLett.111.083001
https://doi.org/10.1063/1.4869781
https://doi.org/10.1063/1.4869781
https://doi.org/10.1063/1.4869781
https://git-scm.com/
https://git-scm.com/
https://github.com/tecnd/adwinGUI
https://github.com/tecnd/adwinGUI
https://tecnd.github.io/adwinGUI/index.html
https://tecnd.github.io/adwinGUI/index.html
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html

	bf084517d87008391977d6db4a5fdec0ef2f850035c274d146d51e61aefeca70.pdf
	bf084517d87008391977d6db4a5fdec0ef2f850035c274d146d51e61aefeca70.pdf
	Acknowledgments
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Software
	2.1 Organization
	2.1.1 File types
	2.1.2 File responsibilities

	2.2 Version Control and Documentation
	2.3 Automated Quality Control
	2.4 Software Improvements
	2.4.1 Verification

	2.5 Python
	2.6 Save Conversion
	2.6.1 The save process
	2.6.2 Building a save converter
	2.6.3 The template injection method

	3 Hardware
	3.1 Motivation and Concept
	3.2 Metrics
	3.3 Experiments
	3.3.1 Intrachannel jitter
	3.3.2 Long-term intrachannel jitter
	3.3.3 Interchannel jitter
	3.3.4 New equipment

	3.4 Discussion

	4 Summary and Outlook
	4.1 Summary
	4.2 Future Work

	A adwinGUI
	A.1 User Guide
	A.1.1 Menu Bar
	A.1.2 Page Buttons
	A.1.3 Analog and Digital Tables
	A.1.4 Scan Values Table
	A.1.5 Usage Notes

	 References

