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Abstract

In our universe, there exists unequal amounts of matter and antimatter; the

origin of this asymmetry requires Charge-Parity (CP) violation. However, the stan-

dard model of particle physics, which describes the electromagnetic, strong, and weak

fundamental forces and classifies elementary particles, does not account for enough

CP violation to explain this asymmetry. To find new sources of CP violation, we

want to search for forces or particles that are not captured by the standard model.

One such method is to test the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM)

matrix, which describes how quarks mix under the weak force. If the CKM matrix

can be shown to not be unitary by comparing experimental measurements and theo-

retical predictions of the CKM matrix elements, then this implies the existence of a

fourth generation of quarks. Quarks bind together in groups of two to form mesons,

which are governed by the strong nuclear force, and require lattice QCD to study

theoretically with precision. I fit Monte Carlo simulated lattice QCD data for the

form factors of the Bs → K and Bs → Ds decays, and found that the Bs → K decay

required three terms to get the best possible fit, while the Bs → Ds decay required

two terms. Unfortunately, the “best” χ2 value of any of the fits was 87, pointing to

inaccuracies in the fits.



Chapter 1

Introduction

In short, the goal for this project is to find new physics by showing that there is an

additional generation of quarks not captured by the current standard model of particle

physics. Before we can do so, however, we need to take a step back and take a deeper

look at what makes up our universe. It is reasonable to expect that an equal amount

of matter and antimatter was created in our universe during the Big Bang. However,

if this were true, the matter and antimatter would have mostly annihilated, leaving

a radiation-dominated universe. Given that I am typing this thesis on a computer,

which is made up of matter, there appears to be more matter than antimatter.

There are three conditions, known as Sakharov conditions, which must be met in

order for this asymmetry between matter and antimatter to occur [1]. One of these

Sakharov conditions is Charge-Parity (CP) violation [1]. The standard model of

particle physics, which describes the strong, weak, and electromagnetic fundamental

forces, as well as classifies the elementary particles, does not account for enough CP

violation for this asymmetry to occur [2]. So, we need to look for new sources of CP

violation, such as particles or forces that are not captured by the standard model.

One method of searching for CP violation is examining the Cabibbo-Kobayashi-

Maskawa (CKM) matrix. I will discuss the CKM matrix in depth in chapter 2, but

for now, the CKM matrix describes how quarks mix under weak interactions. The
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weak force mixes up quarks, which can annihilate. In the standard model, the CKM

matrix is 3x3 and unitary [3]. If it can be shown to not be unitary, this would

imply that the matrix is actually 4x4, which in turn implies the existence of a 4th

generation of quarks. Unfortunately, this would not tell us any information about the

new generation, just that it exists.

Quark interactions in the standard model are governed by the strong nuclear

force, as described by quantum chromodynamics (QCD) [2]. One method of evalu-

ating quantum systems is perturbation theory. Perturbation theory is a systematic

approach for obtaining approximate solutions. QCD is strongly coupled at low energy

scales, meaning that the coupling coefficient diverges. Unfortunately, this means that

perturbation theory is not convergent at low energy scales, and so cannot be used to

solve the system analytically in this case. Instead, we need to use lattice QCD, which

is a numerical approach to QCD, to evaluate the system. I will discuss lattice QCD

in detail in chapter 2.

Circling back to the CKM matrix, each matrix element represents the relative

probability that a quark decays from one flavour to another. So, to test the unitarity

of the matrix, we can take measurements of certain decays, and compare these exper-

imental measurements to the theoretical predictions based on the standard model. I

explain this process in chapter 3.

In chapter 4, I discuss the results of comparing a path integral estimation to an

exact calculation from quantum mechanics. Also, I implement a Metropolis Monte

Carlo algorithm in order to find the excitation energy of a one dimensional harmonic

oscillator, and perform a stability analysis on the data. Finally, I fit the form factor

data for the Bs → K and Bs → Ds decays to equations 2.6 and 2.7. In chapter 5,

I summarize the findings of this project, as well as look into potential opportunities

for future work extending on this research.
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Chapter 2

Theoretical Background

In this chapter, I outline four key ideas that are essential and need to be explained in

more detail: the Cabibbo-Kobayashi-Maskawa (CKM) Matrix, lattice quantum chro-

modynamics (QCD), the vector and scalar form factors, and Monte Carlo Integration.

2.1 Cabibbo-Kobayashi-Maskawa (CKM) Matrix

The CKM matrix, also called the quark-mixing matrix, describes how quarks mix

under weak interactions. Quarks are the eigenstates of the strong force, however, the

eigenstates of the weak force are linear combinations of strong interaction eigenstates,

rather than the strong eigenstates themselves. Under the standard model, the CKM

matrix is 3x3 and unitary and can be written as follows:

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 , (2.1)

where the subscript s refers to a strange quark, c refers to a charm quark, u refers

to an up quark, d refers to a down quark, t refers to a top quark, and b refers to a

bottom quark [3]. Each matrix element is the square root of the probability that a

quark decays from the second flavour of quark in the subscript to the first [3]. So, for
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example, Vud refers to the probability that a down quark decays into an up quark.

To test the unitarity of the CKM matrix, we need to have a large sample size

of CKM matrix element measurements. However, we will not actually be measuring

them directly. Instead, we can use the connection between QCD, the CKM matrix,

and experimental data, along with Equations 2.2 and 2.3 to calculate the CKMmatrix

elements.

In this project, there are two decay rate equations that the CKM matrix is vital

to. The first of these is

dΓ(Bs → Klνl)

dΩ
∝ |Vub|2

(
c+|f+|2 + c0|f0|2

)
, (2.2)

where Γ is the decay rate, Ω is the solid angle, Bs is a Bs meson, K is a kaon, l is a

lepton, νl is a neutrino, Vub is an element of the CKM matrix, c+ and c− are kinematic

factors, f+ is a vector form factor, and f0 is a scalar form factor [4]. A meson consists

of two quarks bound tightly together by the weak force, as opposed to baryons, which

consist of three quarks [2]. A kaon is a type of meson which contains either an up or

down quark, along with strange quark; either the up/down quark or the strange quark

is an anti-quark, but not both [5]. The Bs meson, on the other hand, is the strange-B

meson, and contains a strange quark and an anti-bottom quark or a bottom quark

and an anti-strange quark [5]. The form factors f+ and f0 parameterize the QCD

contributions, and come from lattice QCD. The other equation is similar, but for the

Bs → Ds decay:

dΓ(Bs → Dslνl)

dΩ
∝ |Vcb|2

(
c+|f+|2 + c0|f0|2

)
, (2.3)

where the kaon is replaced by the Ds meson, which is a meson containing either a

charm and anti-strange quark, or a strange quark and an anti-charm quark, and the

CKM matrix element is changed to Vcb [5]. The reason why I do not specify the exact

pairing of quarks and anti-quarks each of the Bs, K, and Ds mesons consist of is
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because in lattice QCD, there is no electromagnetism, and so we cannot distinguish

quarks and anti-quarks based on charge.

2.2 Lattice Quantum Chromodynamics

Before discussing lattice QCD, first we need to define what QCD is. Quantum chro-

modynamics (QCD) describes strong interactions between quarks [2]. The Lagrangian

for QCD is

LQCD = ψ
i

q(iγ
µ)(Dµ)ijψ

j
q −mqψ

i

qψ
i
q −

1

4
F a
µνF

aµν . (2.4)

Here, ψ
i

q is a quark field with colour index i, ψq = (ψqR, ψqG, ψqB)
T ,γµ is a Dirac

matrix, mq is the mass of the quark, F a
µν is the gluon field strength tensor, which

describes how gluons propagate and interact with themselves, for a gluon with color

index a, and Dµ is the covariant derivative, which ensures the Lagrangian is invariant

under gauge transformations, in QCD [6]. Lattice QCD is a method of analyzing

quantum systems described by QCD, without using perturbation theory. Essentially,

it takes a continuous theory, puts it in a discrete box, and then evaluates it numer-

ically. Spacetime is continuous, and lattice QCD is defined by taking a small finite

value of spacetime and make it discrete. This allows us to then make calculations

using a computer, before getting rid of the lattice spacing and making it continuous

again. It often utilizes Monte-Carlo simulations in order to generate a pseudo-random

data set. The lattice itself can be considered both a physical thing and a math “tool”,

depending on one’s point of view. From an experimental viewpoint, it is a math trick,

but it is also similar to the rectangular lattice seen in atoms.

5



2.3 f+(p⃗) and f0(p⃗) Form Factors

The f+(p⃗) and f0(p⃗) form factors parameterize how particles interact with external

forces and are determined by lattice QCD. They also have a dependence on one

kinematic variable. Usually, this is either the momentum transfer, q2 (technically

this is the square of the momentum transfer, but to be more concise I chose to drop

of the ‘squared’ when referring to q2 for the remainder of this paper), or the energy

of the mesonic decay, EXs [4]. The form factors are defined by the equation

⟨Xs(pXs)|V µ|Bs(pXs)⟩ = f
(Xs)
0 (q2)

M2
Bs

−M2
Xs

q2
qµ

+f
(Xs)
+ (q2)

[
pµBs

+ pµXs
−
M2

Bs
+M2

Xs

q2
qµ
]
,

(2.5)

where Xs (pXs) is either the Bs or K meson with momentum pXs , V
µ is a vector

current that connects a bottom quark with an up quark if Xs = K or a charm quark

if Xs = Ds, f0 is the scalar form factor, and f+ is the vector form factor. The mass

of the Bs meson is represented by MBs , MXs is the mass of either the kaon or the

Ds meson, q2 is the momentum transfer, pµ is the momentum four-vector, and qµ

is the momentum transfer four-vector [4]. However, the form factors can instead be

expressed as an expansion in the variable z, which is defined in equation 2.8. For the

scalar form factors, the equation is

f
(Xs)
0 (q2(z)) =

1

PXs
0

J−1∑
j=0

a
(0,Xs)
j zj, (2.6)

while for the vector form factors the equation looks like

f
(Xs)
+ (q2(z)) =

1

PXs
+

J−1∑
j=0

a
(+,Xs)
j

[
zj − (−1)j−J j

J
zJ
]
, (2.7)

where PXs
0,+ is the Blaschke factor, a is an expansion coefficient, and z is given by the

equation

z =

√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

, (2.8)
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with t+ = (MBs +MXs)
2 and t0 = (MBs +MXs)(

√
MBs −

√
MXs)

2 [4]. The Blaschke

factors, given in the equation

P
(Xs)
0,+ (q2) =

1− q2(
M

(Xs)
0,+

)2

 , (2.9)

account for the effects from unphysical masses [4]. The values for MXs
0,+ are listed in

[4].

2.4 Monte Carlo Integration

One method of generating probability distributions for lattice QCD simulations is

through Monte Carlo integration. It is possible to do this is to use vegas, which is a

code package that deals with multidimensional integration [7]. In this project, I make

use of the Metropolis Monte Carlo algorithm. This process starts with an arbitrary

path and alters it by randomizing each of the values at each individual lattice site [7].

In order to randomize a value at a certain lattice site, first an algorithm must generate

a random number that has a uniform probability distribution within a constant range

[7]. Next, it must add the randomly generated number to the value at the lattice site

and compute the change in the action that results (the action is Slat[x] as defined in

equation 3.3). If the action decreases, then it keeps this new value and goes to the next

site. If the action increases, then it generates a random number uniformly distributed

between 0 and 1. If the exponential function of the negative of the difference from

earlier is greater than this new number between 0 and 1, then it keeps this new value

for the current lattice space, and moves on to the next one [7]. The end result of these

steps is a random path different from the old path [7]. This process can be repeated

to create as many random unique paths as desired.

In order to actually calculate an estimation of a function along a path, an algo-

rithm must first initialize the path [7]. One way of doing this is to set the value at

7



each lattice site to zero. Next, the path must be thermalized before being updated

so it can compute and save the function [7]. This step is repeated numerous times.

Then these saved values for the function are averaged. This average is the Monte

Carlo estimate of the function [7].

8



Chapter 3

Numerical Methods

This project focuses on utilizing lattice QCD methods of numerically analyzing a

system, which I described in more detail in section 2.2. Here, I detail the numerical

methods I used to analyze the lattice QCD data.

To start, we need to look at where exactly the data comes from. The data comes

from Monte Carlo integration within the vegas Python package. Vegas utilizes Gaus-

sian variables in order to perform its functions. Gaussian variables are represented by

a data type called gvar.GVar [8]. This data type stores both the mean and standard

deviation of the Gaussian random variables that they represent [8]. In large part, the

data is based on path integrals.

3.1 Path Integral Estimation

In order to better understand how both vegas and Monte Carlo integration works, I

first used them to estimate the quantum mechanical propagator ⟨x|e−Ĥt|x⟩ by eval-

uating a path integral. In this case, I used the Hamiltonian for a one-dimensional

harmonic oscillator which, if we recall from PHYS 313, is

Ĥ =
1

2m

[
p̂2 + (mωx)2

]
, (3.1)

9



where m is the mass of the particle, p̂ is the momentum operator, ω is the angular

frequency of oscillation, and x is the particle’s position [9]. I then compared the

results to the exact value, which is obtained from standard quantum mechanics. The

path integral is

⟨x|e−Ĥt|x⟩ ≈ A

∫ ∞

−∞
dx1 . . . dx7e

−Slat[x], (3.2)

where A is the normalization constant and Slat[x] is defined as

Slat[x] =
7∑

j=0

[m
2a

(xj+1 − xj)
2 + aV (xj)

]
, (3.3)

with m = 1, V (xj) =
x2

2
, and a = 1

2
[7]. The results are plotted in figure 4.1, and the

code can be found in Appendix A.3. Next, the sampling itself is based on the Markov

chain Monte Carlo class of algorithms. One of these algorithms is the Metropolis

Monte Carlo algorithm.

3.2 Metropolis Monte Carlo

My next step in learning to better understand vegas was to implement a Metropo-

lis Monte Carlo algorithm in order to find the excitation energy, ∆En, of a one-

dimensional harmonic oscillator. To do so, I first calculated

G(t) =
1

N

∑
j

⟨⟨x(tj + t)x(tj)⟩⟩ (3.4)

for t = 0, a, 2a, ..., (N − 1)a, with N = 20 lattice slices and a lattice spacing of a = 1
2

[7]. Then, from these calculated G values, I calculated the excitation energy using

the equation

∆E ≡ log(G(t)/G(t+ a))/a. (3.5)

To calculate the error on ∆E, I implemented a jackknife error algorithm [10],

which can be found in Appendix A.2. I will explain the jackknife error estimation

10



method in more detail in section 3.3. I will also discuss the results of this approach

to calculating the excitation energy in section 4.2.

Going further, I also calculated the excitation energy by fitting the G values I

calculated to an exponential of the form G(t) = ae−bt using lsqfit. This is feasible

because for large t,

G(t) → | < E0|x̃|E1 > |2e−(E1−E0)t, (3.6)

as given in [7]. Thus, in the exponential fit, b = ∆E and a is a constant. The

Python package lsqfit does least-squares fitting of noisy data by non-linear multi-

dimensional functions [11]. It also utilizes Bayesian priors for the fit parameters and

is heavily reliant on the gvar Python package I previously mentioned [11]. I will

discuss the results of the fitting in section 4.2.

I also employ Monte Carlo simulated data to find the form factors described in

section 2.3. Looking at Equation 2.2, Bs → Klν comes from experiment, |Vub| comes

from the CKM matrix, and the form factors come from lattice QCD. If we know two

of these, then we can calculate the other. In my case, I measure the scalar and vector

form factors, f0 and f+ for both the Bs → K and Bs → Ds decays. In order to

do this, we need precise theoretical predictions of CKM matrix elements from the

standard model. We also need the Bs → K and Bs → Ds decays, which come from

experiment. And the f0 and f+ form factors come from the Monte Carlo simulated

data. I fit this form factor data to equations 2.6 and 2.7; these fits will be discussed

in section 4.3.

3.3 Jackknife Resampling

The jackknife resampling method estimates the error in measurements by eliminating

potential bias that arises in individual data points [10]. Essentially, a Jackknife

11



algorithm takes a set of x values, removes the first value, then calculates the average

of the remaining x values. It then calculates f(x) using this average. Next, it removes

the second x value, while keeping the first that was previously removed, and goes

through the same calculations as before. This process is repeated until every x value

has been removed once [10].

The jackknife averages are defined by the equation

xJi ≡ 1

N − 1

∑
j ̸=i

xj, (3.7)

where xJi are the jackknife averages, N is the number of x values in the original

sample, and xj is the sum of all the x values except for xi [10]. Thus, the jackknife

estimation of f(X) calculated as

f(X) ≃ f(xJ) ≡ 1

N

N∑
i=1

f(xJi ), (3.8)

where f(xJ) is the average of the f(xJi ) values [10]. The uncertainty in this estimation

of f(X) can be calculated using the equation

σf(x̄) =
(√

N − 1
)
σf(xJ ), (3.9)

where σf(x̄) is the uncertainty [10]. σf(xJ ) is defined by the equation

σ2
fJ = (f (xJ))2 −

(
f (xJ)

)2

. (3.10)

In addition to applying jackknife resampling to estimate the error, I also utilized a

couple of data analysis techniques. One is stability analysis and the other is known

as folding.
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3.4 Stability Analysis and Folding

Stability analysis, in reference to fitting a function, refers to limiting certain aspects

of the data in order to see if these changes result in a better fit. Some of these aspects

that can be played with include the range of the data included in the fit and the a

priori estimates of the priors. I will discuss the results of the stability analysis for

the G(t) = ae−bt exponential fit in section 4.2.

Folding, on the other hand, refers to averaging symmetric data points in an effort

to reduce error and make the data more accurate by increasing the relevant sample

size of the data. This technique applies only to time-symmetric data. To help visualize

what exactly “symmetric data points” refers to, one can think of a parabola of the

form f(x) = x2. In this example, the data points at x = 1 and x = −1 are symmetric,

as are x = 2 and x = −2, x = 3 and x = −3, and so on. As part of my analysis of

the Metropolis Monte Carlo data I fit to G(t) = ae−bt, I folded the G(t) data values

and plotted it alongside the fit function. I discuss these results in section 4.2.
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Chapter 4

Results

In this section, I first detail the results of comparing a path integral to the exact

calculation of the values. Next, I discuss the data and plots related to the excitation

energy extrapolation. Finally, I explain the scalar and vector form factor data and

plots of the data fit to equations 2.7 and 2.6.

4.1 Path Integral vs Exact Calculation

First, I calculated ⟨x|e−Ht|x⟩ by evaluating a path integral and compared the resulting

value to the value obtained from standard quantum mechanics [7]. The equation for

the path integral can be found in equation 3.2. The results are plotted in figure 4.1,

and my code for this exercise can be found in Appendix A.3. Looking at the plot,

most of the data points calculated by the path integral lie along the curve of the exact

calculation. There are error bars on the path integral data points, they are just very

small.

4.2 Metropolis Monte Carlo Data

Next, I implemented a Metropolis Monte Carlo algorithm for a one-dimensional har-

monic oscillator in order to find the excitation energy, ∆En. To do so, I first used

equation 3.4 to calculate G(t) values for for t = 0, a, 2a, ...(N − 1)a, with N = 20

14



Figure 4.1: Plot comparing the calculation of ⟨x|e−Ht|x⟩ using exact methods (mul-
tiplying by a known constant) and using a path integral estimation.

lattice slices and lattice spacing of a = 1
2
[7]. Then, from these calculated G values, I

calculated the excitation energy using equation 3.5.

To calculate the error on ∆E, I implemented a jackknife error algorithm, as de-

scribed in section 3.3 which can be found in Appendix A.2. The results of this

approach to calculating the excitation energy can be found in figure 4.2, which show

a decent approximation from t = 0 to t = 1.0, after which the data appears to be

less accurate. There is also very little error up to t = 2.0, at which point the error

begins to increase dramatically with each consecutive data point. Interestingly, the

only data point which appears to not reach the expected value of ∆E = 1.0 within

the error limits is the data point at t = 1.5.

In addition to using equations to calculate the excitation energy, I also used the

Python package lsqfit to fit my calculated G(t) data to an exponential equation

matching the form of equation 3.6. To attempt to get a more accurate fit, I first

folded my data of G values. I then recalculated the error on each data point. Next, I

15



Figure 4.2: Plot of the excitation energy at varying times t. The excitation energy
was calculated using the equation ∆E ≡ log(G(t)/G(t+a)/a. The horizontal red line
at ∆E = 1.0 is the expected value. The vertical blue lines are the error estimations
on each point. These errors were calculated using the jackknife method.

did the fit using lsqfit. I then performed a stability analysis in which I altered the

ranges of t included in various fits. The results of this stability analysis can be found

in figure 4.3. Looking at the plot, including the full range of t appears to result in a

value closest to the expected value, and the error increases as the range of t gets more

restricted. One reason for this is that limiting the range of t decreases the sample

size. Another reason is that I cut out the initial values of t, which were more precise.

Both of these explain why the error increased in the way that it did. Furthermore,

my folded data for G(t) can be found in figure 4.4, along with a fit for G(t) = ae−bt,

with a = 0.49 and b = 0.99.

4.3 Form Factor Data

Next, we use the various methods and tools mentioned in Chapter 3 to generate a

fit to approximate the form factors associated with the Bs → Klν and Bs → Dslν
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Figure 4.3: This plot is a stability analysis for finding ∆E(t) done by limiting the
range of t that I included in the fit. The horizontal line at ∆E(t) = 1.0 is the expected
value for ∆E(t), and the vertical bars are the error estimations on the ∆E(t).

Figure 4.4: This is a plot of my folded data of G(t) (the blue data points) fit to the
equation G(t) = ae−bt, with a = 0.49 and b = 0.99, with a χ2 per degree of freedom
of 0.039.

decays. The fit for the scalar form factors are be in the form of equation 2.6, and the

vector form factors are be in the form of equation 2.7.
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The first step of generating the fit was calculating z using equation 2.8. Although,

to do so, first the momentum transfer q2 must be calculated. The momentum transfer

is defined as qµ = pµBs
− pµXs

[4]. Thus, by doing some simplifying we can use the

equation q2 = M2
Bs

+M2
Xs

− 2MBsEXs to calculate q2, where EXs is the energy of

either the kaon or the Ds meson.

Now, we fit the data. For each type of decay, I input the energy values as the

independent variable and the form factors given in tables IV and V of [4] as the

dependent variable. Instead of only fitting each to a single function, I did fits to a

constant function, a linear function, a quadratic function, and a cubic function. For

example, for the scalar form factors, this looks like a0 + a1z + a2z
2 + a3z

3.

4.3.1 K decay data

To start, let’s examine the data for the scalar form factors for the Bs → K decay.

The first fit I did was the most simple, just f0 = a0, where a0 = 0.57721± 0.00060.

Figure 4.5: This is a plot of the expected scalar form factors for the Bs → K
decay (the red dots) compared with the curve fit to the equation f0 = a0, where
a0 = 0.57721± 0.00060. The fit has a χ2 per degree of freedom of 850.
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Even by just taking a quick glance at figure 4.5, it is quickly obvious that this

fit is terrible. It simply does not include enough terms to accurately fit to the given

data. However, we would expect the blue fit line to be closer to the average of the

form factor data (slightly above 0.65, as opposed to between 0.55 and 0.60 as it is

currently). This hints that there may be some issues with either the code or lsqfit,

or both. These observations are supported by its χ2 per degree of freedom of 850.

Next, I fit the data to f0 = a0 + a1z, where a0 = 0.3740 ± 0.0020 and a1 =

−1.951 ± 0.018. Looking at figure 4.6, at first glance this fit appears to be better

than the previous one. The fit line is closer to the data points, however, it still

does not appear to be very good since none of the data points are actually along the

trendline. This is again supported by the fact that this fit has a χ2 per degree of

freedom of 290: better than the previous fit, but still not great. Again, adding more

terms will probably result in a better fit.

Figure 4.6: This is a plot of the expected scalar form factors for the Bs → K decay
(the red dots) compared with the curve fit to the equation f0 = a0 + a1z, where
a0 = 0.3740±0.0020 and a1 = −1.951±0.018. The fit has a χ2 per degree of freedom
of 290.
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The next fit I did was to f0 = a0 + a1z + a2z
2, where a0 = 0.4549 ± 0.0053,

a1 = −0.10 ± 0.11, and a2 = 9.44 ± 0.57. Looking at figure 4.7, this fit does not

appear to be much better than the previous one. This is supported by the fit’s χ2

per degree of freedom of 280. Since the last two χ2 per degree of freedom values were

similar, I am not sure if adding more terms will change much, especially with the

probable issues with the fitting code.

Figure 4.7: This is a plot of the expected scalar form factors for the Bs → K decay
(the red dots) compared with the curve fit to the equation f0 = a0+a1z+a2z

2, where
a0 = 0.4549± 0.0053, a1 = −0.10± 0.11, and a2 = 9.44± 0.57. The fit has a χ2 per
degree of freedom of 280.

The last fit I did for the scalar form factors associated with the Bs → K decay was

to the equation z = a0+ a1z+ a2z
2+ a3z

3, where 0.4523± 0.0055, a1 = −0.14± 0.12,

a2 = 9.40± 0.62, and a3 = 1.32± 0.98. Taking a look at figure 4.8, this fit is nearly

indistinguishable from the previous quadratic fit. This is supported by the fact that

the parameters a0, a1, and a2 are so similar between the two fits, and that both fits

have a χ2 per degree of freedom of 280.

Next come the vector form factors. Unlike the scalar form factors, the vector form
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Figure 4.8: This is a plot of the expected scalar form factors for the Bs → K decay
(the red dots) compared with the curve fit to the equation f0 = a0+a1z+a2z

2+a3z
3,

where a0 = 0.4523±0.0055, a1 = −0.14±0.12, a2 = 9.40±0.62, and a3 = 1.32±0.98.
The fit has a χ2 per degree of freedom of 280.

factors are fit to equation 2.7. The first fit I did to just a scalar term was similar to

the one for the scalar form factors, and so there is no useful information to glean from

it. Thus, I skip to the next fit I did, to the equation f+ = a0 + a1
(
z + 1

2
z2
)
, where

a0 = 0.5511 ± 0.0094 and a1 = −9.64 ± 0.13; this fit has a χ2 per degree of freedom

of 89. Interestingly is the “best” χ2 per degree of freedom of any fit so far, although

it still is not very good. This fit can be seen in figure 4.9

I next fit the data to f+ = a0 + a1
(
z − 1

3
z3
)
+ a2

(
z2 + 2

3
z3
)
, where a0 = 0.610±

0.010, a1 = −7.78± 0.19, and a2 = 9.4± 1.1. This fit has a χ2 per degree of freedom

of 87. Since this value improved, I did another fit up to the a3 term.

The final fit for theBs → K decay is the fit to the equation f+ = a0+a1
(
z + 1

4
z4
)
+

a2
(
z2 − 2

4
z4
)
+ a3

(
z3 + 3

4
z4
)
, with a0 = 0.623 ± 0.010, a1 = −7.42 ± 0.19, a2 =

11.1 ± 1.1, and a3 = 1.0 ± 1.0, with a χ2 per degree of freedom of 87. This is the

same value as the previous fit, so including any more terms probably will not result
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Figure 4.9: This is a plot of the expected vector form factors for the Bs → K decay
(the red dots) compared with the curve fit to the equation f+ = a0 + a1

(
z + 1

2
z2
)
,

where a0 = 0.5511 ± 0.0094 and a1 = −9.64 ± 0.13. The fit has a χ2 per degree of
freedom of 89.

Figure 4.10: This is a plot of the expected vector form factors for the Bs → K decay
(the red dots) compared with the curve fit to the equation f+ = a0 + a1

(
z − 1

3
z3
)
+

a2
(
z2 + 2

3
z3
)
, where a0 = 0.610± 0.010, a1 = −7.78± 0.19, and a2 = 9.4± 1.1. The

fit has a χ2 per degree of freedom of 87.
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in a better fit.

Figure 4.11: This is a plot of the expected vector form factors for the Bs → K decay
(the red dots) compared with the curve fit to the equation f+ = a0 + a1

(
z + 1

4
z4
)
+

a2
(
z2 − 2

4
z4
)
+ a3

(
z3 + 3

4
z4
)
, where a0 = 0.623 ± 0.010, a1 = −7.42 ± 0.19, a2 =

11.1± 1.1, and a3 = 1.0± 1.0. The fit has a χ2 per degree of freedom of 87.

4.3.2 Ds decay data

Similar to the Bs → K decay, I began with fitting the data to the function f0 = b0,

where b0 is a constant (I chose to use b as the parameters for the Ds fits and a for

the K fits). However, it was a similarly atrocious fit, and so I will skip to the second

fit I did: the fit to the equation f0 = b0 + b1z. Here, b0 = 0.7392 ± 0.0018 and

b1 = −1.951± 0.018, and the fit has a χ2 per degree of freedom of 440. Interestingly,

this fit has a much higher χ2 per degree of freedom value than the linear fit of the

Bs → K decay did. By adding more terms to the fit, I would assume that the χ2 per

degree of freedom value would decrease similarly to how it did for the Bs → K decay

fits.

The next equation I fit the data to is f0 = b0+b1z+b2z
2, where b0 = 0.7403±0.0019,
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Figure 4.12: This is a plot of the expected scalar form factors for the Bs → Ds

decay (the red dots) compared with the curve fit to the equation f0 = b0+ b1z, where
b0 = 0.7392± 0.0018 and b1 = −2.727± 0.069. The fit has a χ2 per degree of freedom
of 440.

b1 = −2.638±0.085, and b2 = 1.8±1.0. This fit, surprisingly, also has a χ2 per degree

of freedom of 440. Although, looking at the form factor data, perhaps this should

not be surprising. The red dots on the graph are tightly packed together and much

less spread out then they were for the Bs → K decay. As a result, it is much harder

to determine the full behavior of the data outside of the range −0.30 < z < −0.015.

Since the χ2 per degree of freedom value remained the same when adding a quadratic

term, I would not expect adding a cubic term to add anything either.

The fit to the equation f0 = b0 + b1z + b2z
2 + b3z

3, with b0 = 0.7405 ± 0.0019,

b1 = −2.628± 0.087, b2 = 1.7± 1.0, and b3 = 0.9± 1.0, can be found in figure 4.14.

This fit, like the two previous ones, has a χ2 per degree of freedom of 440. So, this

points to the scalar form factors associated with the Bs → Ds decay only requiring a

linear fit to get the best possible fit.

Moving on to the vector form factors, which are fit to equation 2.7. I again skip

the fit to a constant for the same reasons as previously listed, and instead fit the data
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Figure 4.13: This is a plot of the expected scalar form factors for the Bs → Ds decay
(the red dots) compared with the curve fit to the equation f0 = b0+ b1z+ b2z

2, where
b0 = 0.7403 ± 0.0019, b1 = −2.638 ± 0.085, and b2 = 1.8 ± 1.0. The fit has a χ2 per
degree of freedom of 440.

Figure 4.14: This is a plot of the expected scalar form factors for the Bs → Ds decay
(the red dots) compared with the curve fit to the equation f0 = b0+ b1z+ b2z

2+ b3z
3,

where b0 = 0.7405± 0.0019, b1 = −2.628± 0.087, b2 = 1.7± 1.0, and b3 = 0.9± 1.0.
The fit has a χ2 per degree of freedom of 440.

to f+ = b0 + b1
(
z + 1

2
z2
)
, where b0 = 0.8553 ± 0.0047 and b1 = −6.81 ± 0.21 with a

χ2 per degree of freedom value of 140. This fit can be found in figure 4.15.
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Figure 4.15: This is a plot of the expected vector form factors for the Bs → Ds decay
(the red dots) compared with the curve fit to the equation f+ = b0 + b1

(
z + 1

2
z2
)
,

where b0 = 0.8553 ± 0.0047 and b1 = −6.81 ± 0.21. The fit has a χ2 per degree of
freedom of 140.

Next I fit the vector form factor data to the equation f+ = b0 + b1
(
z − 1

3
z3
)
+

b2
(
z2 + 2

3
z3
)
, where b0 = 0.8571±0.0046, a1 = −6.63±0.21, and b2 = 1.1±1.0. This

fit has a χ2 per degree of freedom of 140. This value did not decrease, and so I would

not expect fitting up to a b3 term to either. The plot of this fit can be seen in figure

4.16. Since the χ2 per degree of freedom value did not decrease, I would not expect

fitting to a b0 term would do so either, however, I still include the fit next.

The last form factor data fit we are going to look at is the fit to the equation

f+ = b0 + b1
(
z + 1

4
z4
)
+ b2

(
z2 − 2

4
z4
)
+ b3

(
z3 + 3

4
z4
)
, where b0 = 0.8572 ± 0.0046,

b1 = −6.63± 0.21, b2 = 1.1± 1.0, and b3 = 1.0± 1.0, with a χ2 per degree of freedom

of 140. The fit results can be found in figure 4.17.
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Figure 4.16: This is a plot of the expected vector form factors for the Bs → Ds decay
(the red dots) compared with the curve fit to the equation f+ = b0 + b1

(
z − 1

3
z3
)
+

b2
(
z2 + 2

3
z3
)
, where b0 = 0.8571± 0.0046, a1 = −6.63± 0.21, and b2 = 1.1± 1.0. The

fit has a χ2 per degree of freedom of 140.

Figure 4.17: This is a plot of the expected vector form factors for the Bs → Ds decay
(the red dots) compared with the curve fit to the equation f+ = b0 + b1

(
z + 1

4
z4
)
+

b2
(
z2 − 2

4
z4
)
+ b3

(
z3 + 3

4
z4
)
, where b0 = 0.8572 ± 0.0046, b1 = −6.63 ± 0.21, b2 =

1.1± 1.0, and b3 = 1.0± 1.0. The fit has a χ2 per degree of freedom of 140.
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Chapter 5

Conclusions

In this project, I fit the form factor data given in [4] to equations of the form of

equations 2.6 and 2.7 in an attempt to extract values for the ratio |Vub|/|Vcb|. Along

the way, I learned how to use the vegas and lsqfit Python packages, encountered

numerous Python errors (and solved most of them!), and finally got some results,

although I did not quite get to the point of extracting a value for |Vub|/|Vcb|. Although

these results were not great, they were still useful in providing some insight into the

form factor equations, as well as how to improve on this project in the future.

To start, based on the fits I did, it to get best possible fit of the scalar and

vector form factors for the Bs → K decay requires fitting to three terms. Conversely,

for the Bs → Ds decay, the scalar and vector form factors only required two terms.

Unfortunately, however, I am not sure how well this will hold up, since none of my fits

had a ‘good’ χ2 per degree of freedom value. The inaccuracies in the fits are in part

due to using a simplified fit equation. The fit equation I used does not incorporate the

chiral corrections, LXs , which account for discretization effects caused by the lattice.

This is almost certainly causing some amount of error. I also was unable to include the

Blaschke factor term in my fits; as a result, my fits do not account for the unphysical

quark masses. Aside from including these corrections within the fit equation, another

method of accounting for these corrections would be to only include data points with
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the same initial conditions, such as those with the same lattice spacing, in a given fit.

However, the fact that the discrepancies between the form factor data and the fits

point towards problems with the fitting code as the main source of error in the fits.

5.1 Future Work

There are a few potential avenues to explore regarding this research in the future.

First and foremost, debugging the fitting code is essential to get any sort of decent

fits. Next, doing the fits while accounting for the chiral corrections and including the

Blaschke factor would be a good place to start to see how much these corrections

affect the fits. Additionally, it would be interesting to see if grouping the data based

on their initial conditions and then fitting each impacts the fits. Finally, getting to

the point where the values for |Vub|/|Vcb| can be extracted is another extension of this

project that could be done. We also now have experimental data from LHCb not

available at the time of the previous paper, which can be utilized in future analysis

[12].
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Appendix A

Python Computer Programs

A.1 Code sample 1

The following is the Python code for the path integral vs exact calculation
comparison.

/***********************************************************/

/* Noah Shanton */

import vegas

import numpy

import math

import matplotlib.pyplot as plt

N = 8

Xn=1

m=1

a=0.5

E=.5

T=4

t=numpy.arange(0.0, 2.0, 0.2)

def f(x):

S = 0

A=(m/(2*math.pi*a))**(N/2)

x=numpy.append(x,Xn)

x=numpy.insert(x,0,Xn)

for j in range(N):

S+=((m/(2*a))*(x[j+1]-x[j])**2+(a*x[j]**2)/2)

return math.exp(-S)*A

s=0

V=numpy.zeros(len(t))

while s < len(t):

t = numpy.arange(0.0, 2.0, 0.2)

Xn=t[s]

lim = 5
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intrange = [-lim,lim]

intlist = [intrange for j in range(N-1)]

integ = vegas.Integrator(intlist)

result = integ(f, nitn=100, neval=10000)

V[s]=result.mean

s+=1

def g(t):

return (math.exp(-(t**2)/2)/(math.pi**(0.25)))**2*math.exp(-E*T)

V2=numpy.vectorize(V)

g2=numpy.vectorize(g)

plt.plot(t, g2(t),"r--",label="Exact")

plt.plot(t, V,"b*",label="Path Integral")

plt.ylabel("<x|e^(-HT)|x>")

plt.xlabel("x")

plt.legend(loc="upper right")

plt.show()

A.2 Code sample 2

The following is an excerpt from my Python code involving the Metropolis
Monte Carlo algorithm. It is the algorithm for a jackknife error estimation.

/***********************************************************/

/* Noah Shanton */

for sledge in range(N):

for ash in range(N_cf): #"transpose" list of G values because my brain likes this better

G_inOrder[sledge][ash]=G[ash][sledge]

for bot in range(N): # create a jachknifed list

for lemon in range(N_cf):

for pain in range(N_cf):

if pain != lemon:

G_J_v2[bot][lemon][pain]=G_inOrder[bot][pain]

else:

G_J_v2[bot][lemon][pain]=0

for kapkan in range(N): #calculate the average G value within each jachknife

for glasses in range(N_cf):

sum=0

for glaz in range(N_cf):

sum+=G_J_v2[kapkan][glasses][glaz]

G_Avg_v2[kapkan][glasses]=sum/(N_cf-1)

values_squared=G_Avg_v2**2
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for iq in range(N): # calculate the error

mozzie=0

thermite=0

for kali in range(N_cf):

mozzie+= G_Avg_v2[iq][kali]

thermite+= values_squared[iq][kali]

G_Avg_sq[iq]=(mozzie/N_cf)**2

G_sq_Avg[iq]=thermite/N_cf

G_err_v2= math.sqrt(N_cf-1) * (G_sq_Avg - G_Avg_sq)**0.5

A.3 Code sample 3

The following is the Python code for one of the form factor fits (namely, the
scalar form factor data for the Bs → K decay fit to the a2 term).

/***********************************************************/

/* Noah Shanton */

priorK02 = gv.BufferDict() # a priori values for fit parameters

priorK02[’a0’]= gv.gvar(1.1,1.0)

priorK02[’a1’]=gv.gvar(-3,1.0)

priorK02[’a2’]=gv.gvar(9.5,1.0)

priorK02[’M_Bs’]=np.array([[gv.gvar(3.23019,0.00025)], [gv.gvar(3.26785,0.00033)],

[gv.gvar(3.23585,0.00038)], [gv.gvar(2.30906,0.00026)], [gv.gvar(2.30122,0.00026)]])

priorK02[’M_K’]=np.array([[gv.gvar(0.31195,0.00014)],[gv.gvar(0.32870,0.00017)],

[gv.gvar(0.35744,0.00021)],[gv.gvar(0.22861,0.00021)],[gv.gvar(0.24566,0.00013)]])

fitK02 = lsqfit.nonlinear_fit(data=(EnergyK0,form_factorsK0),prior=priorK02,fcn=fcnK02)

pK = fitK02.p # best-fit values for parameters

outputsK02 = gv.BufferDict()

outputsK02[’a0’] = pK[’a0’]

outputsK02[’a1’]=pK[’a1’]

outputsK02[’a2’]=pK[’a2’]

outputsK02[’M_Bs’] = pK[’M_Bs’]

outputsK02[’M_K’] = pK[’M_K’]

inputsK = OrderedDict()

inputsK[’f0’] = form_factorsK0 #y values

inputsK[’prior’] =priorK02 #priors

print(fitK02)
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fK02_values=np.zeros(len(x_axis))

fK02_error=np.zeros(len(x_axis))

maybe=0

for maybe in range(len(x_axis)):

fK02_values[maybe]=(pK[’a0’]+pK[’a1’]*x_axis[maybe]+pK[’a2’]*x_axis[maybe]**2).mean

fK02_error[maybe]=(pK[’a0’]+pK[’a1’]*x_axis[maybe]+pK[’a2’]*x_axis[maybe]**2).sdev

plt.errorbar(x_axis,fK02_values,yerr=fK02_error)

plt.errorbar(z_list_K,form_K0_values,yerr=form_K0_error,fmt=’r.’)

plt.ylabel(’$f_{0}$’)

plt.xlabel(’z’)

plt.show()
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