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Abstract

We show that a stochastic description of quantum field theory may explain the anomalously
low quadrupole moment in the temperature power spectrum of the cosmic microwave back-
ground. Stochastic quantum field theory permits non-equilibrium states and features the Born
rule as an equilibrium description of probability distributions. We study the stochastic har-
monic oscillator, which converges to the quantum harmonic oscillator at a rate that is inverse
exponential in the frequency ω. We then describe a simple inflaton field as a mode expansion
of stochastic harmonic oscillators. In this model, the modes of the inflaton field have smaller
widths than expected in quantum field theory when they are frozen by inflation. We suggest
that this may cause a decrease in low-ℓ moments of the temperature power spectrum.

i



Acknowledgements
First and foremost, Prof. Joshua Erlich has been the best research advisor I could hope for.
His enthusiasm for his work is second only to his skill at explaining complex topics in a way
that even a mere undergraduate can understand.

Furthermore, the W&M faculty as a whole has been a delight to learn and train under. In
particular I would like to thank Profs. Ryan Vinroot, Chris Monahan, David Armstrong, and
Pierre Clare for their devotion to and excellence in their craft. They answered my
spontaneous 11 PM emails about topics dubiously related to class material, and for this I
will be forever grateful.

Beyond this, and in no particular order, I would like to thank the other educators who
expanded my horizons and sated my frequently annoying curiosity:

1. Sundar Thirukkurungudi, Duke Writer, and the rest of the staff at the Loudoun
Academy of Science, for making school by far the most fun part of my day and hearing
out a high schooler who thought he was much smarter than he was,

2. Mr. D’Arcangelis, who first opened my eyes to the beauty of physics in his 6th grade
science class at Blue Ridge Middle School. He was a light in an otherwise dark period
of my life, and one of my biggest regrets is falling out of contact with him.

3. Sue Yakscoe, who gave preschool me a book on black holes purchased with her own
money. I thank her for planting the seeds of the scientific interest and crippling
existential dread that follow me to this day.

4. Profs. Leonard Susskind, Alex Flournoy, Frederic Schuller, and all others who make
physics lectures comparable to any paid education and post them in full, online, for
free, for kickstarting the future of education

5. Alexandra Elbakyan and the visionaries behind all other shadow libraries, for breaking
the cartel-esque hold that modern publishers have on fundamental scientific
advancement and allowing me to study deeply without a six-figure income.

Finally, my deepest thanks go out to my family and my amazing parents, who did a job
much harder than any I’ve ever done and never once asked anything in return. This paper is
as much yours as it is mine.

ii



Contents

1 Introduction 1
1.1 The Quadrupole Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Non-Equilibrium Deviations from Quantum Theory . . . . . . . . . . . . . . 2

2 Stochastic Mechanics 4
2.1 Mechanics 1: Stochastic Derivatives . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Mechanics 2: The Nelson-Newton Equation . . . . . . . . . . . . . . . . . . 7
2.3 Mechanics 3: The Fokker-Planck equations . . . . . . . . . . . . . . . . . . 9
2.4 From Nelson to Schrödinger . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 The Stochastic Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Inflationary Cosmology 23
3.1 Schrödinger equation in expanding spacetime . . . . . . . . . . . . . . . . . 23
3.2 Anisitropies in the Cosmic Microwave Background . . . . . . . . . . . . . . 25
3.3 Inflaton Field Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 The Stochatic Inflaton Field 30

5 Conclusion 33

iii



List of Figures

1.1 Planck measurements of the multipole coefficients of CMB temperature isotropy
vs. theoretical predictions of ΛCDM . Error bars are 1σ, including cosmic vari-
ance. Note the anamalously low ℓ = 2 moment. [1] . . . . . . . . . . . . . . 2

2.1 A snapshot of ensembles evolving as stochastic harmonic oscillators at time
t = 0.5 from an original position of x0 = 15. Simulated ensemble is blue;
theoretical prediction is orange. . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Average crossing time of 0 for stochastic harmonic oscillators starting at x0 =
15 as a function of ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iv



1 Introduction

1.1 The Quadrupole Anomaly

The cosmic microwave background (CMB) is a natural place to look for signs of
beyond-Standard Model physics. Small changes in the quantum behavior of fields are writ
large by inflation, preserving a record of small-scale, short-time phenomena that would
normally be nearly unmeasurable. As a result, it is a goal of many beyond-Standard Model
theories to explain any anomolies in CMB data.

One such deviation is the anomalously low quadrupole moment in the CMB temperature
power spectrum. Both the Planck mission [1] and the Wilkinson Microwave Anisotropy
Probe [2] have measured this anomaly, which was noted by the Planck mission to deviate
from the expected value by greater than 1σ even once cosmic variance is factored in [3].
The fact that this discrepancy appears in multiple measurements suggests that the anomaly
is no more artifact of measurement. Thus the cause of the quadrupole anomaly is largely
attributed to one of two causes: either new physics or greater cosmic variance.

Cosmic variance is essentially the observation that we only have one sky to measure. Since
inflation cannot be reproduced in a lab, measurements of the CMB constitute one
irreproducible measurement of a probability distribution. From this view, the presence of a
few anomalies should not be a surprise. This argument particularly applies to the low-ℓ
domain which our chosen anomaly lies in. Most theories assume that the spherical harmonic
coefficients aℓm are drawn from the same distribution for each ℓ, giving us 2ℓ+ 1

measurements of the 2ℓ-pole distribution. Thus the low-ℓ are drawn from a smaller sample
size, further increasing the likelihood of anomalies. However, even with this uncertainty
factored in, the quadrupole moment of the temperature power spectrum is still unexpectedly
low. In order to explore this persistent anomaly, and to sate our curiosity, we therefore
choose to search for a possible physical origin of this discrepancy.

1



Figure 1.1: Planck measurements of the multipole coefficients of CMB temperature isotropy
vs. theoretical predictions of ΛCDM . Error bars are 1σ, including cosmic variance. Note the
anamalously low ℓ = 2 moment. [1]

1.2 Non-Equilibrium Deviations from Quantum The-

ory

One category of theories that have been investigated for explaining the low-ℓ temperature
anomaly is non-equilibrium quantum theory. Such theories feature standard rules of
quantum mechanics, such as the Born rule, not as axioms but rather dynamic equilibria that
a system approaches over time. Perhaps the best known example of this is de Broglie-Bohm
theory, in which an arbitrary ensemble of particles is guided over time by a pilot wave into a
distribution that agrees with the Born rule. de Broglie-Bohm theory was first derived in an
attempt to give a "realist" interpretation of quantum theory. In recent years, it has been
used by some (notably Valentini [4]) to explain anomalies in the CMB. While we will not be
investigating these theories here, they provide a useful blueprint for how a non-equilibrium
theory can lead to discrepancies in the temperature power spectrum.

Instead, we will suggest how a newer non-equilibrium theory of stochastic quantum gravity
may explain these anomalies. Like de Broglie-Bohm theory, this theory was not originally
developed for the purpose of explaining CMB anomalies. Rather, it was motivated by the
fact that a discrete Poisson scattering of stochastic events in spacetime might provide a
physical ultraviolet regulator for use in Sakharov’s procedure for induced quantum
gravity [5] [6]. Furthermore, on a large scale, these discrete kicks will appear continuous,
causing functions of spacetime to evolve with stochastic differential equations. By following
the process of Nelson, quantum mechanics then emerges from stochastic mechanics [7].
These stochastic differential equations (SDEs) give rise to the non-equilibrium nature of the
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theory. Arbitrary ensembles of particles or field densities are allowed as initial conditions, but
over time they will tend towards an equilibrium distribution that agrees with quantum
theory.

In this paper, we will use this non-equilibrium behavior to suggest an explanation for the
low-ℓ temperature anomaly. First, we will develop the basic theory of stochastic mechanics
and describe the stochastic harmonic oscillator. Next, we will review CMB anomalies and
how they arise from inflationary cosmology. Finally, we will describe a version of the
standard inflation field using stochastic harmonic oscillators and suggest how the slow
evolution of its low-k modes could produce the low-ℓ anomaly. We will provide avenues of
future research on this topic, such as the derivation of the Schrödinger equation from
stochastic mechanics in expanding spacetime.
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2 Stochastic Mechanics

The basis of most stochastic quantum theories is Nelson’s work on stochastic mechanics.
Nelson showed that under basic assumptions, the Schrödinger equation can be derived from
the evolution of a stochastic process. We will show a version of this derivation here that
largely follows de la Peña, Cetto, and Hernández [8]. We will then discuss how stochastic
states obey the Born rule as an equilibrium, rather than a postulate; as an example, we will
consider the stochastic harmonic oscillator, which will play a key role in stochastic quantum
field theory.

2.1 Mechanics 1: Stochastic Derivatives

In order to do dynamics in a stochastic system, we first need to define derivatives. We will
start with the fundamental differential equation for a stochastic process x :

dx = (v + u)dt +
√
2DdW (2.1)

where v and u are the convective and stochastic velocities and D is the diffusion
coefficient. This contains the standard variance with respect to time, along with a term
dW proportional to the Wiener process. Broadly speaking, this term produces a "kick"
with a normally distributed direction and magnitude at each timestep. It is characterized by
the relation dW 2 = dt; this causes many expansions of differentials to include quadratic
terms which are ignored in normal calculus.

In stochastic dynamics, we consider derivatives of deterministic functions f (x) on stochastic
variables x . These are calculated in the usual way using the chain rule. However, this is
complicated because the differential dx of a stochastic variable includes a term proportional
to dW ∼ dt1/2. Thus the terms in the chain rule proportional to dx2 will have elements of
order dt. Taking this into account yields two independent definitions of the derivative of
f (x), commonly called the convective and stochastic derivatives.

We will start with the convective derivative. This is derived by considering a standard
expression for the derivative of f (x), defining the forward and backward differences
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∆+(x) = x(t +∆t)− x(t) and ∆−(x) = x(t)− x(t −∆t) for brevity:

f (∆+(x))− f (∆−(x))

2∆t
(2.2)

Expanding this with the chain rule gives

f (∆+(x))− f (∆−(x))

2∆t
=
∂f

∂t
+
∂f

∂xa
∆+(xa) + ∆−(xa)

2∆t
+

∂2f

∂xadxb
∆+(xa)∆+(xb)−∆−(xa)∆−(xb)

4∆t
+...

(2.3)

In normal calculus, we can take the limit ∆t → 0 and find that all terms after the second
vanish. However, in this case, the differences ∆t contain terms proportional to dW ∼ dt1/2,
so this limit cannot be taken. We can avoid this issue by taking the expectation value of
both sides. Since dW represents Gaussian noise, it vanishes on average. This gives us the
expression

⟨f (∆+(x))− f (∆−(x))⟩
2∆t

=
∂f

∂t
+

∂f

∂xa
⟨∆+(xa)⟩+ ⟨∆−(xa)⟩

2∆t
(2.4)

+
∂2f

∂xadxb
⟨∆+(xa)∆+(xb)⟩ − ⟨∆−(xa)∆−(xb)⟩

4∆t
+ ... (2.5)

where we have used the fact that the expectation value of a sum is the sum of the
expectation values.

We can show that the second term vanishes. The only term in the products ∆+(xa)∆+(xb)

and ∆−(xa)∆−(xb) that is proportional to dt is the product of the noise terms dW . But the
noise is symmetric in time; the process gets the same distribution of kicks whether it is
moving forward or backward in time. Thus the dt terms ∆+(xa)∆+(xb) and ∆−(xa)∆−(xb)

are equal; thus to order dt, the difference ⟨∆+(xa)∆+(xb)⟩ − ⟨∆−(xa)∆−(xb)⟩ vanishes.
This leads us to the definition of the convective derivative, denoted as Dc :

Dc(f (x)) =
⟨f (∆+(x))− f (∆−(x))⟩

2∆t
=
∂f

∂t
+

∂f

∂xa
⟨∆+(xa)⟩+ ⟨∆−(xa)⟩

2∆t
(2.6)

The operator expression of Dc is thus

Dc =
∂

∂t
+

⟨∆+(xa)⟩+ ⟨∆−(xa)⟩
2∆t

· ∇

One might notice that this is similar to the continuity equation. We make the comparison
more clear by defining the convective velocity
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v =
⟨∆+(xa)⟩+ ⟨∆−(xa)⟩

2∆t
(2.7)

which allows us to write the convective derivative in the compact form

Dc =
∂

∂t
+ v · ∇ (2.8)

This is one way to define the derivative of a deterministic function of a stochastic variable.
However, these is another, equally powerful way, and it is this definition that earns the title
of stochastic derivative.

The idea behind the stochastic derivative is to take the sum, rather than the difference, of
the function at nearby points:

⟨f (∆+(x)) + f (x(t −∆t))⟩
2∆t

(2.9)

Just as before, we can expand this with the chain rule, with the difference being in the signs
and the new term proportional to f (x)

∆t
:

f (x(t +∆t)) + f (x(t −∆t))

2∆t
=

2f (x)

2∆t
+
∂f

∂xa

∆+(xa)−∆−(xa)

2∆t
(2.10)

+
∂2f

∂xa∂xb

∆+(xa)∆+(xb) + ∆−(xa)∆−(xb)

2∆t
+ .. (2.11)

This definition by itself doesn’t make much sense, since the term 2f (x)
∆t

will blow up as
∆t → 0. To get around this, we manually subtract this term from our definition of the
stochastic derivative, and take the expectation value to get rid of dW terms:

Ds f (x) :=
⟨f (x(t +∆t) + f (x(t −∆t))− 2f (x(t))⟩

2∆t
(2.12)

Thus we define the stochastic derivative Ds as

Ds f (x) =
∂f

∂xa

⟨∆+(xa)⟩ − ⟨∆−(xa)⟩
2∆t

+
∂2f

∂xa∂xb

⟨∆+(xa)∆+(xb)⟩+ ⟨∆−(xa)∆−(xb)⟩
2∆t

(2.13)

Just as before, we will redefine the terms proportional to partials of f as "velocities". The
term proportional to ∂g

∂xa
will be called the stochastic velocity, as denoted as u:

6



u :=
⟨∆+(xa)⟩ − ⟨∆−(xa)⟩

2∆t
(2.14)

The second-order term is more complicated. Unlike in the convective derivative, the
second-order terms are summed, so this term does not disappear. Furthermore, since this
term has two lower indices, it cannot be defined as a vector velocity like v or u; instead, it
must be defined as a (0, 2) tensor called the diffusion tensor and denoted Dab:

Dab :=
⟨∆+(xa)∆+(xb)⟩+ ⟨∆−(xa)∆−(xb)⟩

2∆t
(2.15)

With these definitions, we can rewrite the stochastic derivative in a continuity equation-like
form:

Ds f (x) = ua ·
∂f

∂xa
+ Dab

∂2f

∂xa∂xb
(2.16)

In general, this is a difficult system to analyze. However, in all cases of interest to us, the
diffusion tensor is diagonal and has the same element along the entire diagonal; that is, Dab

just behaves like a scalar. Thus we can drop the indices and simply denote Dab as the
diffusion coefficient D. This allows us to rewrite the stochastic derivative in a much
simpler form:

Ds f (x) = u · ∇f + D∇2f (2.17)

Removing f gives us the operator form of the stochastic derivative:

Ds = u · ∇+ D∇2 (2.18)

2.2 Mechanics 2: The Nelson-Newton Equation

We have defined the convective and stochastic derivatives of a deterministic function
of a stochastic variable as

Dc =
∂

∂t
+ v · ∇ (2.19)

Ds = u · ∇+ D∇2 (2.20)

Note the useful relations
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Dcx = v (2.21)

Dsx = u (2.22)

Nelson’s insight was to use these derivatives to write a stochastic equivalent of Newton’s law.
The force F is defined in our case as the usual gradient of a potential −∇V (x). However,
since there are two derivatives in play, there are four independent accelerations:

acc = DcDcx = Dcv (2.23)

acs = DcDsx = Dcu (2.24)

asc = DsDcx = Dsv (2.25)

ass = DsDsx = Dsu (2.26)

Thankfully, we are spared from having four different equations of motion by a symmetry
argument. Since we aim to create an analogue to Newton’s second law, we expect the force
to be proportional to a linear combination of the accelerations; that is, we expect

F = m (λccacc + λcsacs + λscasc + λssass) (2.27)

We will only be considering forces F that are gradients of some potential V (x) which
depends only on position. This is useful because a function of position must be invariant
under time reversal. It can be shown that the convective derivative Dc is invariant under
time reversal, while Ds picks up a minus sign. Thus the accelerations acc and ass are
invariant under time reversal, while acs and asc pick up the minus sign of their lonely Ds .
But this means that, in order for F to be invariant under time reversal, we must have
λcs = λsc = 0. Thus we are left with one equation of motion in two accelerations, which is
often rewritten slightly as

F = mλm (acc + λass) (2.28)

Substituting the definitions of acc , ass , Dc , and Ds and letting λm = 1 by convention, we get
a full equation of motion:

F = m

(
∂v

∂t
+ v · (∇v) + λ

(
u · (∇u) + D∇2u

))
(2.29)
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which is called the Nelson-Newton equation.

2.3 Mechanics 3: The Fokker-Planck equations

The Nelson-Newton equation is one of the two fundamental stochastic equations from which
the Schrödinger equation can be derived. The other is similar to a continuity equation, and
deals not only with functions of the stochastic variable x and its velocities, but also the
probability distribution for these functions. The evolution of this probability distribution is
goverened by the Fokker-Planck equations. We will quickly derive these here, as this
derivation will be reexamined later in curved space.

Consider a deterministic function f of a stochastic variable x . Since f depends on a
stochastic variable, its differential change df (x) depends on its higher order
derivatives:

df (x) = ∇f · dx +
1

2
∇2fdx2 + ... (2.30)

Substituting the stochastic differential equation for x reveals not one, but two terms
proportional to dt:

df (x) = ∇f ·
(
(v + u)dt +

√
2DdW

)
+

1

2
∇2f

(
(v + u)dt +

√
2DdW

)2
+ .. (2.31)

= ∇f ·
√
2DdW +∇f · (v + u)dt + D∇2fdt + .. (2.32)

We want to get at the probability distribution for f . The most natural way to do this is to
compute the ensemble average of f . This trick also gets rid of the troublesome dW term;
since the dW kicks are normally distributed, their contribution will disappear when averaged.
Thus calculating the expectation value of df gives us an equation proportional to dt:

⟨df ⟩ = d ⟨f ⟩ =
∫

p(x , t)df (x)dx (2.33)

=

∫
p(x , t)

(
∇f · (v + u) + D∇2f

)
dtdx (2.34)

Instruting the mathematicians to avert their gaze and dividing through by dt, we get an
equation for d⟨f ⟩

dt
:
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d ⟨f ⟩
dt

=

∫
p(x , t)

(
∇f · (v + u) + D∇2f

)
dx (2.35)

However, this is an equation involving the derivatives of f , and is therefore does not help us
determine the dynamics of p. To fix this, we integrate both components of the integral by
parts, using the fact that limx→±∞ p(x , t) = 0:

d ⟨f ⟩
dt

=

∫ (
−∇ · p(x , t)(v + u) + D∇2p(x , t)

)
fdx (2.36)

But we could also calculate d⟨f ⟩
dt

by simply taking the time derivative of the earlier
expression:

d ⟨f ⟩
dt

=
d

dt

∫
p(x , t)df (x)dx (2.37)

=

∫
∂p

∂t
df (x)dx (2.38)

Settings these integrands equal and rearranging gives us the forward Fokker-Planck
equation:

∂p

∂t
+∇ · p(x , t)(v + u)− D∇2p(x , t) = 0 (2.39)

We will not derive the backward Fokker-Planck equation here, as the steps are very
similar. Instead, we will simply state it:

∂p

∂t
+∇ · p(x , t)(v − u) + D∇2p(x , t) = 0 (2.40)

The astute reader may notice that these equations are seperable in v and u. Adding them
gives us the second equation of motion that we mentioned earlier, which looks like a
continuity equation:

∂p

∂t
+∇ · (p(x , t)v) = 0 (2.41)

Subtracting them does not give us an equation of motion, but rather a useful expression for
u in terms of p:

∇ · (p(x , t)u)− D∇2p = 0 (2.42)
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This can be integrated, assuming u has no rotational component [8], to give

u = D
∇p

p
(2.43)

which is known as Fick’s law of diffusion.

As a closing note, it is often useful to talk about the probability current of a distribution
p(x , t) that follows a Fokker-Planck equation. The definition of a probability current J for a
distribution p usually follows from assuming that probability is conserved, which gives the
continuity equation

∂p

∂t
+∇ · J = 0 (2.44)

Note that the forward Fokker-Planck equation takes this exact form if we define the
probability current as

J(x , t) = p(x , t)(v + u)− D∇p(x , t) (2.45)

We will call this the Fokker-Planck probability current.

2.4 From Nelson to Schrödinger

We have derived the following equations of motion:

F = m

(
∂v

∂t
+ v · (∇v) + λ

(
u · (∇u) + D∇2u

))
(2.46)

∂p

∂t
+∇ · (p(x , t)v) = 0 (2.47)

Turnings these into the Schrödinger equation is a two-step process. First, we will rewrite v

and u in terms of p and s, which will become the magnitude and phase of our wavefunction,
and integrate the first equation; once this is done, we can separate the equations and derive
the Schrödinger equation via a change of variables.

Our first goal is to integrate the Nelson-Newton equation. This is already nearly done; in
fact, if we consider a conservative force F = −∇V , then all but one terms can be written as
a gradient already:
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−∇V = m

(
∂v

∂t
+∇

(v · v
2

)
+ λ

(
∇
(u · u

2

)
+∇(D∇ · u)

))
(2.48)

Writing the final term as a gradient is somewhat difficult, and is not strictly required to
re-derive the Schroödinger equation. However, since we will be considering only spherically
symmetric potentials, we can safely assume in our case that v has no rotational component.
Thus we can write v as the gradient of some function S . It turns out that the most
convenient way to do this is as follows:

v = 2D∇S (2.49)

Writing v in this way lets us finally integrate the Nelson-Newton equation:

− V = m

(
2D

∂S

∂t
+ 4D2∇S · ∇S

2
+ λ

(u · u
2

+ D∇ · u
))

(2.50)

For good measure, we should make the same substitution in the continuity equation:

∂p

∂t
+ 2D∇ · (p(x , t)∇S) = 0 (2.51)

Now we just need to substitute our expression for u in terms of p into the first equation, and
we will have our differential equations entirely in terms of p and S . It turns out there is a
clever way to do this that combines the two u-dependent terms into one. We start with
direct substitution:

u · u
2

+ D∇ · u = D2∇p · ∇p

2p2
+ D2∇ · ∇p

p
(2.52)

= D2

(
∇p · ∇p

2p2
+

∇2p

p
− ∇p · ∇p

p2

)
(2.53)

= D2

(
∇2p

p
− ∇p · ∇p

2p2

)
(2.54)

The astute reader may smell a gradient lurking. And in fact, this is almost equal to

∇2√p = ∇ ·
(
1

2

∇p
√
p

)
(2.55)

=
1

2

(
∇2p
√
p

− 1

2

(∇p)2

p3/2

)
(2.56)
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This is almost the function we want, but it’s off by a factor of 2√
p
. We will simply multiply

this factor in:

2
∇2√p
√
p

=
∇2p

p
− 1

2

(∇p)2

p2
(2.57)

In this way we can rewrite the terms in the equation of motion that depend on u as one
term:

u2

2
+ D∇ · u = 2D2∇2√p

√
p

(2.58)

Substituting this back in and rearranging slightly, we have our equations of motion in terms
of only p and S :

m

(
2D

∂S

∂t
+ 4D2∇S · ∇S

2
+ 2D2λ

∇2√p
√
p

)
+ V = 0 (2.59)

∂p

∂t
+ 2D∇ · (p∇S) = 0 (2.60)

We can now separate these equations by changing variables to the wavefunctions ψ+ and
ψ−:

ψ+ =
√
peS/

√
λ (2.61)

ψ− =
√
pe−S/

√
λ (2.62)

which gives the substitutions

p = ψ+ψ− (2.63)

S =

√
λ

2
ln

(
ψ+

ψ−

)
(2.64)

Let us start our algebra with the simpler continuity equation:
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∂(ψ+ψ−)

∂t
+ 2D∇ ·

(
ψ+ψ−∇

√
λ

2
ln

(
ψ+

ψ−

))
= 0 (2.65)

Pulling out constants:

∂(ψ+ψ−)

∂t
+
√
λD∇ ·

(
ψ+ψ−∇ ln

(
ψ+

ψ−

))
= 0 (2.66)

Evaluating the inner gradient:

∂(ψ+ψ−)

∂t
+
√
λD∇ ·

(
ψ+ψ−

ψ−

ψ+
∇
(
ψ+

ψ−

))
= 0 (2.67)

∂(ψ+ψ−)

∂t
+
√
λD∇ ·

(
ψ2
−∇

(
ψ+

ψ−

))
= 0 (2.68)

∂(ψ+ψ−)

∂t
+
√
λD∇ ·

(
ψ2
−

(
∇ψ+

ψ−
− ψ+∇ψ−

ψ2
−

))
= 0 (2.69)

∂(ψ+ψ−)

∂t
+
√
λD∇ · (ψ−∇ψ+ − ψ+∇ψ−) = 0 (2.70)

∂(ψ+ψ−)

∂t
+
√
λD
(
∇ψ− · ∇ψ+ + ψ−∇2ψ+ −∇ψ+ · ∇ψ− − ψ+∇2ψ−

)
= 0 (2.71)

∂(ψ+ψ−)

∂t
+
√
λD
(
ψ−∇2ψ+ − ψ+∇2ψ−

)
= 0 (2.72)

Expanding the time derivative:

∂ψ+

∂t
ψ− +

∂ψ−

∂t
ψ+ +

√
λD
(
ψ−∇2ψ+ − ψ+∇2ψ−

)
= 0 (2.73)

This is as far as we can expand the continuity equation. The second equation is more
complicated, so let’s look at each term by itself:

2Dm
∂S

∂t
= 2Dm

∂

∂t

√
λ

2
ln

(
ψ+

ψ−

)
(2.74)

Pulling out a constant:
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2Dm
∂S

∂t
=

√
λDm

∂

∂t
ln

(
ψ+

ψ−

)
(2.75)

Doing the time derivative:

2Dm
∂S

∂t
=

√
λDm

ψ−

ψ+

∂

∂t

(
ψ+

ψ−

)
(2.76)

=
√
λDm

ψ−

ψ+

(
∂ψ+

∂t

1

ψ−
− ∂ψ−

∂t

ψ+

ψ2
−

)
(2.77)

=
√
λDm

(
∂ψ+

∂t

1

ψ+
− ∂ψ−

∂t

1

ψ−

)
(2.78)

That’s all we can do for the first term. Now for the second term:

2D2m(∇S)2 = 2D2m

(
∇
√
λ

2
ln

(
ψ+

ψ−

))2

(2.79)

Pulling out the constant:

2D2m(∇S)2 =
λD2m

2

(
∇ ln

(
ψ+

ψ−

))2

(2.80)

Doing the gradient:

2D2m(∇S)2 =
λD2m

2

(
ψ−

ψ+
∇
(
ψ+

ψ−

))2

(2.81)

=
λD2m

2

(
ψ−

ψ+

(
∇ψ+

ψ−
− ψ+∇ψ−

ψ2
−

))2

(2.82)

=
λD2m

2

(
∇ψ+

ψ+
− ∇ψ−

ψ−

)2

(2.83)

=
λD2m

2

(
(∇ψ+)

2

ψ2
+

− 2
∇ψ+ · ∇ψ−

ψ+ψ−
+

(∇ψ−)
2

ψ2
−

)
(2.84)

Now the last term:
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2D2mλ
∇2√p
√
p

= 2D2mλ
∇2
√
ψ+ψ−√
ψ+ψ−

(2.85)

Nothing to do here but dive into the Laplacian:

2D2mλ
∇2√p
√
p

= D2mλ
∇2 (ψ+ψ−)

ψ+ψ−
(2.86)

= D2mλ
(∇2ψ+)ψ− + 2∇ψ+ · ∇ψ− + ψ+(∇2ψ−)

ψ+ψ−
(2.87)

= D2mλ

(
∇2ψ+

ψ+
+ 2

∇ψ+ · ∇ψ−

ψ+ψ−
+

∇2ψ−

ψ−

)
(2.88)

Throwing this Laplacian into Mathematica:

∇2
√
ψ+ψ− =

1

4(ψ+ψ−)3/2
(2ψ+ψ−

(
ψ+∇2ψ− +∇ψ+ · ∇ψ−

)
− ψ2

−
(
−2ψ+∇2ψ+ + (∇ψ+)

2
)
− ψ2

+(∇ψ−)
2)

=
1

4(ψ+ψ−)3/2
(
2ψ+ψ−∇ψ+ · ∇ψ− + 2ψ2

+ψ−∇2ψ− + 2ψ2
−ψ+∇2ψ+ − ψ2

−(∇ψ+)
2 − ψ2

+(∇ψ−)
2
)

Dividing through by
√
ψ+ψ− and cancelling some terms gives us a nicer looking

equation:

∇2
√
ψ+ψ−√
ψ+ψ−

=
1

4(ψ+ψ−)2
(2ψ+ψ−∇ψ+ · ∇ψ− (2.89)

+2ψ2
+ψ−∇2ψ− + 2ψ2

−ψ+∇2ψ+ − ψ2
−(∇ψ+)

2 − ψ2
+(∇ψ−)

2) (2.90)

=

(
∇ψ+ · ∇ψ−

2ψ+ψ−
+

∇2ψ−

2ψ−
+

∇2ψ+

2ψ+
− (∇ψ+)

2

4ψ+
− (∇ψ−)

2

4ψ2
−

)
(2.91)

Plugging this back into the term:

2D2mλ
∇2√p
√
p

= D2mλ

(
∇ψ+ · ∇ψ−

ψ+ψ−
+

∇2ψ−

ψ−
+

∇2ψ+

ψ+
− (∇ψ+)

2

2ψ+
− (∇ψ−)

2

2ψ2
−

)
(2.92)

Finally, substituting all these terms back into the original equation gives us the formidable
formula
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√
λDm

(
∂ψ+

∂t

1

ψ+
− ∂ψ−

∂t

1

ψ−

)
+
λD2m

2

(
(∇ψ+)

2

ψ2
+

− 2
∇ψ+ · ∇ψ−

ψ+ψ−
+

(∇ψ−)
2

ψ2
−

)
(2.93)

+D2mλ

(
∇ψ+ · ∇ψ−

ψ+ψ−
+

∇2ψ−

ψ−
+

∇2ψ+

ψ+
− (∇ψ+)

2

2ψ+
− (∇ψ−)

2

2ψ2
−

)
= 0 (2.94)

Thankfully, the entire middle term is cancelled by parts of the last term. After cancelling,
the equation now fits on the page!

√
λDm

(
∂ψ+

∂t

1

ψ+
− ∂ψ−

∂t

1

ψ−

)
+ D2mλ

(
∇2ψ−

ψ−
+

∇2ψ+

ψ+

)
= 0 (2.95)

We will separate this together with the reframed continuity equation:

∂ψ+

∂t
ψ− +

∂ψ−

∂t
ψ+ +

√
λD
(
ψ−∇2ψ+ − ψ+∇2ψ−

)
= 0 (2.96)

First, notice the abundance of terms similar to ∂ψ±
ψ±

in the first equation and the similar
abundance of (∂ψ±)ψ∓ terms in the second equation. We can convert one to another by
multiplying or dividing through by ψ+ψ−. In this spirit of separation of variables, let’s
choose to divide the continuity equation by ψ+ψ−:

∂ψ+

∂t

1

ψ+
+
∂ψ−

∂t

1

ψ−
+
√
λD

(
∇2ψ+

ψ+
− ∇2ψ−

ψ−

)
= 0 (2.97)

Multiplying by
√
λDm gives us something similar to the first equation, but antisymmetric in

ψ+ and ψ−:

√
λDm

(
∂ψ+

∂t

1

ψ+
+
∂ψ−

∂t

1

ψ−

)
+ λD2m

(
∇2ψ+

ψ+
− ∇2ψ−

ψ−

)
= 0 (2.98)

Adding and subtracting this from the first equation eliminates the terms that depend on ψ−

and ψ+ respectively:
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2
√
λDm

∂ψ+

∂t

1

ψ+
+ 2D2mλ

∇2ψ+

ψ+
+ V = 0 (2.99)

−2
√
λDm

∂ψ−

∂t

1

ψ−
+ 2D2mλ

∇2ψ−

ψ−
+ V = 0 (2.100)

We now see the light. Moving the time derivatives to the other side and multiplying through
by ψ+ and ψ− respectively, we get something very reminiscent of the Schrödinger
equation:

−2
√
λDm

∂ψ+

∂t
= 2D2mλ∇2ψ+ + Vψ+ (2.101)

2
√
λDm

∂ψ−

∂t
= 2D2mλ∇2ψ− + Vψ− (2.102)

The classical Schrödinger equation follows if we choose λ = −1 and D = h̄
2m

:

−i h̄
∂ψ+

∂t
= − h̄2

2m
∇2ψ+ + Vψ+ (2.103)

i h̄
∂ψ−

∂t
= − h̄2

2m
∇2ψ− + Vψ− (2.104)

2.5 The Stochastic Harmonic Oscillator

The harmonic oscillator is one of the simplest systems in classical quantum mechanics.
Similarly, the stochastic harmonic oscillator is described by the Ornstein-Uhlenbeck process,
defined by the following stochastic differential equation:

dx = −axdt +
√
2DdW (2.105)

From our derivation of the Schrödinger equation, we know that we should let D = h̄
2m

. We
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will also find that the velocity a corresponds to the frequency of the harmonic oscillator.
Knowing all this, we define the stochastic harmonic oscillator as the system

dx = −ωxdt +
√

h̄

m
dW (2.106)

The connection between this process and the quantum harmonic oscillator comes from
considering an ensemble of processes that obey this differential equation. If this ensemble
has a delta function distribution p(x , t) = δ(x0) at time t0, then at time t it takes the
form [9]

p(x , t) =

√
ωm

2πh̄ (1− e−2a(t−t0))
e
− ωm

2πh̄(1−e−2ω(t−t0))
(x−x0e−ω(t−t0))

2

(2.107)

This is a Gaussian with mean x0e
−ω(t−t0) and width ω

D(1−e−2ω(t−t0))
. Note that as t → ∞, this

becomes nothing but the ground state of the quantum harmonic oscillator. Furthermore, the
speed of this convergence increases with ω. This is an important result: low frequency
oscillators converge to equilibrium slower than high frequency oscillators.

The rate at which a stochastic harmonic oscillator converges to equilibrium is crucial in
studying the quadrupole discrepancy. Thus it is worth studying in more depth. We will
present basic theoretical and numerical results on this topic.

2.5.1 Theoretical Results

First Crossing Time Distribution

A common measure of how fast a stochastic process reaches a certain point q is the first
crossing time distribution of the probability distribution p(x , t) across that point. The
first crossing time across q for a single stochastic process x starting at x0 is the first time
that that process reaches q. More generally, for a probability distribution p(x , t) of some
stochastic process, we can define the first crossing density pfc(X , t) as the probability
density that a stochastic process first crosses X at time t. Assuming the initial distribution
p(x0, t0) starts entirely on one side of X , this is just the magnitude of the Fokker-Planck
probability current through X at time t:

pfc(X , t) = |J(X , t)| = |p(X , t)(v + u)− D∇p(X , t)| (2.108)

To calculate the first crossing density for the stochastic harmonic oscillator, we substitute
v + u = −ωx and D = h̄

2m
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pfc(X , t) =

∣∣∣∣−ωxp(X , t)− h̄

2m
∇p(x , t)

∣∣∣∣ (2.109)

When a stochastic system evolves to some equilibrium, the first crossing time of the mean of
that equilibrium is often interesting. For the stochastic harmonic oscillator, this means we
want to calculate the first crossing density at X = 0. Substituting this simplifies the first
crossing density greatly:

pfc(X , t) =
h̄

2m
∇p(x , t) (2.110)

We can calculate this density analytically for a stochastic harmonic oscillator that starts with
a distribution p(x , 0) = δ(x0):

pfc(0, t) =
h̄

2m

∂p

∂x
(0, t) =

h̄

m

√
ωm

πh̄ (1− e−2ωt)

2ωmx0e
−ωt

h̄ (1− e−2ωt)
e
− ωm

h̄(1−e−2ωt)
x20 e

−2ωt

(2.111)

Future research might attempt to calculate the peak of this distribution as a function of ω
by taking its derivative, or find its average by calculating its integral. Basic attempts at
differentiation via SymPy 1.9 and integration via the modified Risch-Normal algorithm did
not converge in a reasonable time.

Bhattacharyya distance

Another way to calculate how fast a stochastic harmonic oscillator converges to its quantum
counterpart is to compute a similarity measure between the probability distributions. One
measure that can be calculated analytically is the Bhattacharyya distance. The
Bhattacharyya distance between two distributions f (x , t) and g(x , t) is defined as

DB(f , g) =

∫ ∞

−∞

√
f (t)g(t)dt (2.112)

Let us consider the probability distributions |Ψ(x)|2 and p(x , t) for the ground states of the
classical and stochastic harmonic oscillators. The classical distribution |Ψ(x)|2 is a Gaussian
with mean µC = 0 and standard deviation σC =

√
h̄

2mω
, while the stochastic distribution is a

Gaussian with mean µS = x0e
−ωt and standard deviation σC =

√
h̄(1−e−2ωt)

2mω
. Thus their

product |Ψ(x)|2p(x , t) is also a Gaussian with mean

µP =
µCσ

2
S + µSσ

2
C

σ2
C + σ2

S

=
x0e

−ωt h̄
2mω

h̄
2mω

(2− e−2ωt)
=

x0e
−ωt

2− e−2ωt
(2.113)
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and standard deviation

σP =

√
(σSσC )2

σ2
S + σ2

C

=

√√√√ h̄2(1−e−2ωt)
4m2ω2

h̄
2mω

(2− e−2ωt)
=

√
h̄

2mω

1− e−2ωt

2− e−2ωt
(2.114)

Thus the Bhattacharyya distance is

DB

(
|Ψ(x)|2, p(x , t)

)
=

∫ ∞

−∞

(
mω

h̄π

√
1

1− e−2ωt
e
− 1

2

(
x−µP
σP

)2
)1/2

dx (2.115)

=

√
mω

h̄π
(1− e−2ωt)−1/4

∫ ∞

−∞
e
− 1

4

(
x−µP
σP

)2

dx (2.116)

Substituting the mean and standard deviation gives a refreshingly simple form:

DB

(
|Ψ(x)|2, p(x , t)

)
=

√
4mω

h̄
(1− e−2ωt)−1/4

√
h̄

2mω

1− e−2ωt

2− e−2ωt
=

√
2
√
1− e−2ωt

2− e−2ωt

(2.117)

As expected, this correlation is 0 at t = 0 and goes to 1 as t → ∞.

2.5.2 Numerical Results

The probability distribution p(x , t) of a stochastic process can be approximated by
simulating a large number of particles evolving with the stochastic differential equation.
Simulating an ensemble of 106 particles in natural units with m = 1 at several different ωs
illustrates how convergence is faster for higher ω. The full animation cannot be embedded in
this paper, but slices taken at specific times can, and this is shown in Figure 2.1.

The average first crossing time of x = 00 for similar ensembles at different ωs was also
simulated. The relationship between ω and observed first crossing time fits best to 1

ω
with

r 2 = 1.7 · 10−3, as seen in in Figure 2.2.
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Figure 2.1: A snapshot of ensembles evolving as stochastic harmonic oscillators at time t = 0.5
from an original position of x0 = 15. Simulated ensemble is blue; theoretical prediction is
orange.

Figure 2.2: Average crossing time of 0 for stochastic harmonic oscillators starting at x0 = 15
as a function of ω.
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3 Inflationary Cosmology

3.1 Schrödinger equation in expanding spacetime

In this paper, we consider the flat metric

ds2 = dt2 − a(t)2dx2 (3.1)

and the natural free-field Lagrangian density for this metric (where we have included the
integration factor

√
|g | inside the density):

L =

√
|g |
2

gαβ∂α∂βϕ (3.2)

For simplicity, we will generally choose a frame and expand this Lagrangian density into
temporal and spatial components:

L =
a(t)3

2

(
ϕ̇2 − 1

a(t)2
(∇ϕ)2

)
(3.3)

=
1

2

(
a(t)3ϕ̇2 − a(t)(∇ϕ)2

)
(3.4)

We can do two things with this Lagrangian. First, we can solve the Euler-Lagrange
equations to get the wave equation for ϕ:
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∂µ
∂L

∂(∂µϕ)
=
∂L

∂ϕ

=⇒ ∂

∂t

∂L

∂ϕ̇
+∇ · ∂L

∂∇ϕ
= 0

=⇒ ∂

∂t

(
a(t)3ϕ̇

)
−∇ · a(t)∇ϕ = 0

=⇒ a(t)3ϕ̈+ 3a(t)2ȧ(t)ϕ̇− a(t)∇2ϕ = 0

It is convenient to divide this equation by a(t)3, since this turns the clunky factor of ȧ(t)
into the Hubble paramter H := ȧ(t)

a(t)
:

ϕ̈+ 3Hϕ̇− 1

a(t)2
∇2ϕ = 0 (3.5)

Second, having this Lagrangian lets us derive the Hamiltonian for ϕ via the conjugate
momentum µ = ∂L

∂ϕ̇
= a(t)3ϕ̇:

H = a(t)3ϕ̇2 − L =
1

2

(
a(t)3ϕ̇2 + a(t)(∇ϕ)2

)
(3.6)

=
µ2

2a(t)3
+ a(t)(∇ϕ)2 (3.7)

We can turn this into the functional Schrödinger equation for a functional ψ(ϕ(x , t), t) via
the usual quantization of µ̂ = −i δ

δϕ
, ϕ̂ = ϕ:

i
∂ψ

∂t
= − 1

2a(t)3
δ2ψ

δϕ2
+ a(t)(∇ϕ)2ψ (3.8)

In order to apply our theory of stochastic harmonic oscillators to the functional ψ, we need
to split it into its application on their Fourier modes ϕk :

ϕk(k) =
1

(2π)3/2

∫
ϕ(x)e−ix ·kd3x (3.9)

Each mode then satisfies its own Schrödinger equation. However, since the gradient of any
mode ϕk is just ∇ϕk = kϕk , the Schrödinger equation is greatly simplified:
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i
∂ψ[ϕk ]

∂t
= − 1

2a(t)3
∂2ψ[ϕk ]

∂ϕ2
k

+ a(t)k2ϕ2
kψ[ϕk ] (3.10)

This looks very similar to the Schrödinger equation for a harmonic oscillator. We will exploit
this similarity when we describe the same modes in terms of stochastic mechanics.

3.2 Anisitropies in the Cosmic Microwave Background

Our goal is to describe the temperature anisotropy in the cosmic microwave background
(CMB) in terms of stochastic harmonic oscillators. We have established the theory of such
oscillators and discovered how to write the modes of the inflaton field, but we have not yet
discussed how the fluctuations we hope to explain are described. Here, we will give a quick
overview of the cosmology behind temperature fluctuations in the CMB. This discussion will
roughly follow that of Valentini [4].

First, we will define temperature anisotropy. Every measurement of the CMB measures a
function T (θ,ϕ) of the temperature at some solid angle. Denoting the average temperature
across the whole sky as T , we define the temperature anisotropy ∆T as

∆T (θ,ϕ) =
T (θ,ϕ)− T

T
(3.11)

This anisotropy is often written in terms of spherical harmonics with coefficients cℓm:

∆T (θ,ϕ) =
∞∑
ℓ=2

ℓ∑
m=−ℓ

cℓmYℓm(θ,ϕ) (3.12)

Any measurement of the temperature perturbation ∆T (θ,ϕ) thus consists of one set of
coefficients cℓm. It is typically assumed that for every ℓ, the cℓm are drawn from the isotropic
probability distribution. The angular power spectrum of this probability distribution is
written as

Cℓ :=
〈
|c2ℓm|

〉
(3.13)

where ⟨⟩ is an ensemble average.

In the same way, we can break down the Ricci curvature R in terms of its Fourier
components R ′

k . However, it is more useful to work with them in terms of classical
curvature coefficients Rk , defined as
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Rk =
1

4

(a
k

)2
R ′
k (3.14)

These components are also presumed to come from a probability distribution. We define the
power spectrum of the curvature perturbations Pk in terms of the ensemble average
of the squared magnitudes of the Rk and the normalization volume V :

Pk =
4πk3

V

〈
|Rk |2

〉
(3.15)

For simplicity, we will assume that gravitational waves have a negligible effect on the
curvature. Then there is a simple relation between the angular power spectrum and the
curvature power spectrum in terms of the transfer function T (k , ℓ):

Cℓ =
1

2π2

∫
T (k , ℓ)2

k
Pkdk (3.16)

This relation between the temperature anisotropy and the power spectrum of curvature
perturbations is key. If we can express the power spectrum of curvature perturbations in
terms of the widths of modes of the inflaton field, we can make observable conclusions
about how stochastic evolution of the modes to equilibrium affects the temperature
anisotropy.

We can do this by analyzing the inflaton field in a perturbative way. Since the universe on
the largest scales is mostly homogeneous, the inflaton field that generated this homogeneity
should be mostly homogeneous as well. Thus we generally expand the inflaton field ϕ into a
homogeneous part ϕ0 and a small position-dependent perturbation ϕp:

ϕ(x , t) = ϕ0(t) + ϕp(x , t) (3.17)

The perturbation field ϕp(x , t) creates the curvature perturbations we measure today. As
such, one should expect the classical curvature coefficient Rk to be related to the kth
Fourier mode of ϕp(x , t). Such a relation exists, but requires a slightly deeper discussion of
inflation.

Inflation is typically modelled as a short-lived exponential growth in the scale factor a(t).
That is, during inflation, we have a(t) ∼ eHt , where H = ȧ

a
. Furthermore, inflation occurs so

quickly that H is approximately constant for the duration.

Consider a Fourier mode ϕp
k(x , t) of the perturbation field in this environment. On a

comoving surface, this mode has wavelength 2πa(t)
k

. When this wavelength exceeds the
radius of causality H−1, distant parts of the mode are no longer able to communicate with
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each other; thus the perturbation caused by this mode quickly "freezes". The "frozen"
mode is then stretched out by inflation, distributing it homogeneously across space. Finally,
after inflation has stopped, the wavelength finally becomes smaller than H−1 and the
perturbations can again propagate, causing anisotropies in the CMB.

The time at which the wavelength of the kth mode exceeds the radius of causality is called
the exit time texit(k). Thus we should expect the curvature perturbation Rk caused by
ϕp
k(x , t) to be related to ϕp

k(x , t) evaluated at a time slightly after texit(k), when the
perturbation is "frozen". In inflationary theory, time during inflation is often measured in
"e-folds", where one e-fold is the amount of time over which the scale factor a(t) increases
by a factor of e. During inflation, when a(t) ∼ eHt , this is the time interval ∆t such that
eH(t+∆t) = eHt+1. Thus we relate Rk to the value of ϕp

k(x , t) evaluated a few e-folds after
texit(k).

This is the intuition behind the true relationship, which is given as [10]

Rk = − H

ϕ̇0(te)
ϕp
k(x , te) (3.18)

where te is a time a few e-folds after texit(k). We can substitute this into Equation 3.15 to
get a relationship between the width ⟨|ϕp

k(te)|2⟩ of the distribution for the kth mode of the
perturbation field and the curvature power spectrum:

Pk =
4πk3

V

H2

ϕ̇0(te)2

〈
|ϕp

k(te)|
2
〉

(3.19)

Finally, substituting this into Equation 3.16 gives us our key result: a relationship between
the width of the kth mode of the perturbation field and the angular power spectrum:

Cℓ =

∫
T (k , ℓ)2

4πk2

V

H2

ϕ̇0(te)2

〈
|ϕp

k(te)|
2
〉
dk (3.20)

This relationship is key to our result. If we can show that the stochastic modes ϕp
k have

smaller widths at te than their quantum field theory counterparts for certain values of k ,
then we will know that the stochastic predictions for Cℓ will be lower than the quantum field
theoretical predictions.

3.3 Inflaton Field Modes

Now that we know the k-modes for a field operator, we can accomplish our main goal:
explicitly describing the inflaton perturbation field, in its vacuum state, in terms of
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uncoupled modes. We will drop the p superscript for the perturbation field here and instead
denote it simply as ϕ.

We start with the generic mode expansion of a field operator ψ̂ in terms of the annihilation
and creation operators Âk , Â

†
k , in which each mode is a solution to Equation 3.5:

ψ̂ =
∞∑
k=0

1√
2Vk3

((
k

a
+ iH

)
Âke

i(k·x+k/a) +

(
k

a
− iH

)
Â†
ke

i(k·x−k/a)

)
(3.21)

If the field ψ is in its lowest energy state, then every mode should correspond to a Gaussian
probability distribution. From the previous section, we know that that the width of this
distribution is directly related to the angular power spectrum. Thus our next two tasks will
be to calculate the width of the mode ψk in quantum field theory and in stochastic quantum
mechanics.

To get at the width of the distribution, we will first consider the two-point correlation
function of the field in the vacuum at any given time. We choose to work with the
Bunch-Davies vacuum for simplicity; this is the unique state in which a free-falling observer
sees no particles [11].

⟨0|ϕ(x , t)ϕ(x ′, t)|0⟩ (3.22)

Since the vacuum sends annihilation operators to zero, the only surviving terms will be those
with a creation operator on the right and an annihilation operator on the left (as a creation
operator on the left would be equivalent to an annihilation operator on the right by
Hermitian conjugation). Thus this two-point correlation will be of the form

⟨0|ϕ(x , t)ϕ(x ′, t)|0⟩ =
∑
k

k2

a2
+ H2

2Vk3
e ik(x−x ′) (3.23)

We may calculate the width of the kth mode of ϕ by taking the Fourier transform of this
two-point correlation function over all displacements:

〈
|ϕk |2

〉
(t) =

V

(2π)3

∫
e−iky⟨0|ϕ(x , t)ϕ(x + y , t)|0⟩d3y (3.24)

Substituting in the expression for the two-point correlation based on the vacuum annihilating
the annihilator:

〈
|ϕk |2

〉
(t) =

V

(2π)3

∫
e−iky

∑
k

k2

a2
+ H2

2Vk3
e ikyd3y (3.25)
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The exponentials cancel and extract one specific value of k :

〈
|ϕk |2

〉
(t) =

V

(2π)3

∫ k2

a2
+ H2

2Vk3
d3y (3.26)

The integral just multiplies this constant by the volume V , leaving us with

〈
|ϕk |2

〉
(t) =

V

(2π)3

k2

a2
+ H2

2k3
(3.27)

The term multiplied by the normalization constant is the width of the kth mode of ψ in its
lowest-energy state:

∆2
k
QFT =

〈
|ϕk(te)|2

〉
=

k2

a2
+ H2

2k3
(3.28)

This is what the widths predicted by the stochastic theory will be compared to.
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4 The Stochatic Inflaton Field

We will now convert the quantum field theory description of the inflaton field into a
stochastic description. Note that every mode of the inflaton field is in its ground state, and
thus corresponds to a harmonic oscillator. We can thus guess that the modes of the
stochastic inflaton field are stochastic harmonic oscillators obeying the Ornstein-Uhlenbeck
process:

dϕk = −v+ϕkdt +
√
2DdW (4.1)

Consider an ensemble of particles that evolve with this differential equation. Dividing the
distribution of the particles at a time t by the number of particles gives a probability density
p(x , t) for the position of any single particle in the distribution. This probability density in
turn evolves according to the Fokker-Planck equation for this stochastic process:

∂p

∂t
= v+

∂

∂x
(xp) + D

∂2p

∂x
(4.2)

The Green’s functions of this equation for an initial distribution p(x , t) = δ(x0, t0) are
Gaussians with widths given by

∆2
k =

D

v+

(
1− e−2v+(t−t0)

)
(4.3)

In the long-time limit, the width of a stochastic mode ϕk must converge to the width of a
classical mode. Thus the process that corresponds to the kth mode must satisfy

D

v+
=

k2

a2
+ H2

2k3
=

1

2k

(
1

a2
+

H2

k2

)
(4.4)

This width is roughly proportional to 1
k3 when H is large and to 1

k
when H is small. In both

situations, the width (and thus the fraction D/v+) is inversely proportional to k in some
form.
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We will then assume that the diffusion constant D is independent of k . This is analogous to
the stochastic harmonic oscillator, as the wavenumber k is analogous to ω, while D contains
information regarding Planck’s constant h̄ and the mass m of the oscillating particle. In
order for the stochastic process to reproduce the ground state of the kth mode, this requires
that v+ be proportional to k .

Let v+ = Ck where C is includes the terms of the width that are not included in D. Then
the width of the kth mode of the stochastic inflaton field at time t is given by

〈
|ϕk(t)|2

〉
=

1

2k

(
1

a2
+

H2

k2

)(
1− e−2Ck(t−t0)

)
(4.5)

Letting t0 = 0 and evaluating this width at a time te that’s a few e-folds after texit(k):

〈
|ϕk(te)|2

〉
=

1

2k

(
1

a2
+

H2

k2

)(
1− e−2Ckte

)
(4.6)

This is just the width predicted by quantum field theory with an extra factor of(
1− e−2Ckte

)
. From this, we draw two significant conclusions:

1. Stochastic modes with lower k converge to equilibrium slower than modes with higher
k .

2. At any time after t0, low-k modes will have a smaller width (relative to equilibrium)
than high-k modes.

Let us now consider the angular power spectrum Cℓ for low ℓ. In this region, the transfer
function T (k , ℓ) is dominated by the Sachs-Wolfe effect; that is, we can approximate

T (k , ℓ)2 ≈ πH4
0 jℓ

(
2k

H0

)2

(4.7)

Under the assumption that the power spectrum PQFT
k is roughly constant, we can then

approximate CQFT
ℓ as proportional to the experimentally-consistent 1

2ℓ(ℓ+1)
:

CQFT
ℓ ∼

∫
1

k
jℓ(k)dk =

1

2ℓ(ℓ+ 1)
(4.8)

Thus the ratio Cℓ

CQFT
ℓ

is given by
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Cℓ

CQFT
ℓ

=

∫
1

k
jℓ

(
2k

H0

)2
(
1− e−2Ckte

)
1

2ℓ(ℓ+1)

dk (4.9)

= 2ℓ(ℓ+ 1)

∫
1

k
jℓ

(
2k

H0

)2 (
1− e−2Ckte

)
dk (4.10)

= 1− 2ℓ(ℓ+ 1)

∫
1

k
jℓ

(
2k

H0

)2

e−2Cktedk (4.11)

The extent to which this ratio is less than 1 for each value of ℓ thus governs how much
lower the angular power spectrum predicted by stochastic mechanics is than that predicted
by quantum field theory. Note that this ratio is independent of the starting position x0 of
the stochastic harmonic oscillator; thus fixing of this parameter is not required.
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5 Conclusion

We have suggested how a stochastic quantum theory can explain the anomalously low
quadrupole moment in the temperature power spectrum of the CMB. The explanation is
possible because the stochastic theory allows for non-equilibrium probablility distributions;
that is, distributions which do not follow the Born rule. We started by describing the
harmonic oscillator in stochastic mechanics and how it approaches equilibrium. We then
described the stochastic inflaton field in its ground state by replacing each mode with a
stochastic harmonic oscillator. Finally, we found that if the diffusion coefficient D of the
harmonic oscillators is independent of k , the low-k modes of the field will approach
equilibrium slower than the high-k modes. Thus when the modes are "frozen" by inflation,
the ratio of non-equilibrium to equilibrium width will be smaller for low-k modes; thus the
low-ℓ components of the temperature power spectrum will be smaller than in λCDM .

Future research might attempt to put this argument on firmer footing or expand the set of
metrics on which it’s applicable. One could derive the full form of D by deriving the
Schrödinger equation from stochastic mechanics in an expanding metric, then finding the
value of D that agrees with the classical solution. We see at least two ways to do this:
follow the derivation given here in a curved metric, or attempt to derive the equations of
motion from a variational principle akin to that of Yasue [12]. One could also consider the
inflaton field in a curved metric, although this may be more complicated. Further research in
the underlying theory of stochastic quantum gravity may give more insight into D and its
dependence on k .
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