
Hadamard-gate Quantum Image
Recognition: Theory and Experiment

A thesis submitted in partial fulfillment of the requirement
for the degree of Bachelor of Science in

Physics from the College of William and Mary in Virginia,

by

Yuqiao (Cordelia) Li

Prof. Chi-Kwong Li

Prof. Konstantinos Orginos

Prof. David Armstrong

Williamsburg, Virginia
May 16 2022

Contents

Abstract v

1 Introduction 1

1.1 Background . 1

1.2 Basics of Quantum Computation . 2

1.3 Basic Unitary Gates . 3

1.3.1 Single Qubit Gates . 4

1.3.2 Entanglement of Qubits . 4

1.3.3 Multiple Qubit Gates . 5

2 Quantum Image Encoding 7

2.1 Overview of Image Recognition . 7

2.2 Flexible Representation for Quantum Images (FRQI) 8

2.2.1 Theory . 8

2.2.2 Circuit Implementation and Improvement 8

2.3 Quantum Probability Image Encoding (QPIE) 11

3 Quantum Image Recognition 13

3.1 Quantum Hadamard Edge Detection (QHED) and Image Recognition 13

3.2 Applications to Image Recognition 14

i

4 Experiments 17

4.1 Theory of Superconducting Quantum Computer 17

4.2 Experiment with IBM Qiskit . 18

4.2.1 Simple case with a 2-by-2 image 19

4.2.2 Experiments using IBM Qiskit 19

4.3 Improvements . 21

5 Conclusion 24

5.1 Advantages . 24

5.2 Disadvantages and Possible Improvements 24

References 26

ii

Abstract

Quantum computing has gained much attention in recent years due to its strong

computational power. Specifically, quantum computing utilizes the ensemble property

of quantum states to accelerate computations. In quantum computers, information

is encoded in quantum bits (qubits). To perform operations on qubits, we design

quantum circuits using different quantum channels. Previous studies have been done

on image processing using quantum computing, like the Flexible Representation of

Quantum Images. However, the image recognition algorithm in quantum computing

is still an unsolved problem. In this work, we describe our quantum image recognition

algorithm based on Quantum Hadamard Edge Detection and Image Recognition. Our

algorithm can identify the similarity of two properly aligned images, and we tested

our image recognition algorithm on IBM quantum computers with the Qiskit python

package. In our experiment, our algorithm successfully identify the difference of two

images. We also discuss the advantages, disadvantages, and possible improvements

of our algorithm in this paper.

Chapter 1

Introduction

1.1 Background

In recent years, quantum computing has gained much attention due to its strong

computational power for certain classes of problems. A quantum computer utilizes the

ensemble property of quantum states and entanglement to accelerate computations.

For example, currently, classical computers do not have enough power to factorize

an arbitrarily large integer into prime numbers within polynomial time. However,

as described in [1], quantum computers can factorize an integer by Shor’s algorithm

within polynomial time. One encryption method, called the RSA encryption, is based

on factorization of large prime numbers. Thus, if a strong enough quantum computer

could be built in the future, the RSA encryption method would no longer be secure

to encrypt messages.

Even though quantum computing offers high computational power, it is currently

hard to conduct many classical computational tasks in quantum computers. It is

difficult to entangle a large number of particles, and errors and noise may significantly

affect the measurement results and thus the fidelity of the calculations. In addition,

designing quantum algorithms and building quantum circuits is hard, and different

from classical computing. Therefore, more in-depth studies are needed in this field.

1

1.2 Basics of Quantum Computation

In classical computing, the binary bits (0 and 1) are used as the basic computational

unit; in quantum computing, quantum bits, or qubits, are used, in analogy to binary

bits. Specifically, a qubit is a unit vector in the vector space C2 represented under

the basis vectors

|0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
.

Also, a qubit can be in a superposition state:

|ψ⟩ = a|0⟩+ b|1⟩,

where a, b ∈ C, |a|2 + |b|2 = 1. The superposition state means that if we measure

|ψ⟩ = a|0⟩ + b|1⟩, the probability of getting state |0⟩ is |a|2, and the probability of

getting state |1⟩ is |b|2.

As introduced in [1], quantum computation is a collection of a set of registers, a

unitary matrix U , and measurements. When measurements have not been made, the

time evolution of a state follows the Schrödinger equation

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ|ψ(t)⟩,

where the time evolution is given by

|Ψ(t)⟩ = Û(t)|Ψ(0)⟩.

Here, the unitary matrix U is a time-evolution operator: UU † = U †U = I. The

set of all unitary matrices form a group, which is closed under multiplication and the

taking of inverses. Therefore, we can decompose any unitary matrix U into multiple

unitary matrices: U = U1U2...Uk. Unitary matrices preserve length, which implies

conservation of energy in a closed system.

2

Figure 1.1: Qiskit gate library shown in quantum-computing.ibm.com.

As discussed in [1], in quantum circuits, quantum logic gates are unitary matrices.

Therefore, we can achieve any desired unitary gate by decomposing them into basic

unitary gates. For example, given a desired unitary operator U , we can decompose

it as U = U1U2...Uk, where Ui’s are the basic unitary gates. With these basic unitary

gates, we can implement them in, for example, the IBM quantum computers. We will

explain that in the next section.

Since the group of unitary matrices is closed under taking inverses, quantum logic

gates are reversible. Given registers and quantum logic gates, measurements can be

made to extract information. When measurements are performed, the quantum states

collapse, which means we can no longer do any additional operation on the qubits.

The result of measurement of each qubit will be either |0⟩ or |1⟩, with corresponding

probability. Therefore, when we design a quantum circuit, we need to do all operations

before we measure the circuit.

1.3 Basic Unitary Gates

In this section, we present the basic unitary gates for later reference. In our discussion,

we will use the standard gate library from IBM Qiskit shown in Fig. 1.1.

3

quantum-computing.ibm.com

1.3.1 Single Qubit Gates

Let Cn be the complex vector field with n rows. Since each single qubit is a vector

in C2, the single qubit gates are 2-by-2 unitary matrices.

First, we present the Pauli X, Y, Z-gates.

X =

[
0 1
1 0

]
, Y =

[
0 i
−i 0

]
, Z =

[
1 0
0 −1

]
.

Let us define |+⟩ = 1√
2
(|0⟩+ |1⟩) = 1√

2

[
1
1

]
and |−⟩ = 1√

2
(|0⟩−|1⟩) = 1√

2

[
1
−1

]
.

Then, the Hadamard gate

H =
1√
2

[
1 1
1 −1

]
changes |0⟩ to |+⟩ and |1⟩ to |−⟩.

Additionally, we have the P, S, T -gates:

P (ϕ) =

[
1 0
0 eiϕ

]
, S =

[
1 0

0 e
iπ
2

]
, T =

[
1 0

0 e
iπ
4

]
.

Also, these are all special cases of the U -gate:

U(θ, ϕ, λ) =

[
cos

(
θ
2

)
−eiλ sin

(
θ
2

)
eiϕ sin

(
θ
2

)
ei(ϕ+λ) cos

(
θ
2

)]
,

where the θ, ϕ, λ are parameters that we can specify.

1.3.2 Entanglement of Qubits

When two pure state qubits are not entangled, their state vector can be expressed as

tensor product. For two vector v1 =

[
a
b

]
and v2 =

[
c
d

]
, the tensor product of v1, v2 is

v1 ⊗ v2 =

a ·
[
c
d

]
b ·

[
c
d

]
 =


ac
ad
bc
bd

 .
4

For example, if we entangle |0⟩ and |1⟩, we obtain a tensor product

|0⟩ ⊗ |1⟩ =
[
1
0

]
⊗
[
0
1

]
=


0
1
0
0

 ,
and we abbreviate this tensor product as |0⟩ ⊗ |1⟩ = |01⟩.

If two qubits are entangled, their state vector (a vector in C4) cannot be expressed

in tensor product of two vectors in C2. To understand entangled qubits, we look at

their density matrix:

ρ =
∑
i

pi |Ψi⟩ ⟨Ψi| .

This density matrix ρ means that the probability of getting |Ψi⟩ is |pi|2. When

measurement is made, the qubits are no longer entangled. The probability for getting

measurement result |Φ⟩ is p(|Φ⟩) = Tr(|Φ⟩⟨Φ|ρ).

Since the state vector of 2 qubits is in C4, a 4-by-4 unitary matrix would be used

as a 2-qubit gate. All gates involving more than 2 qubits can be decomposed to a

series of unitary gates involving less than or equal to 2 qubits.

1.3.3 Multiple Qubit Gates

One of the most important 2-qubit gates is the CNOT-gate, which uses first qubit

(called the control bit) as a control to decide whether to flip the second qubit (called

the target bit) or not. As shown in Fig. 1.2, the first qubit q0 is the control bit, and

the second qubit q1 is the target bit. If q0 is |0⟩, then this gate does nothing on q1; if

q0 is |1⟩, then q1 is flipped as an X-gate is applied on q1.

A CNOT-gate can be represented as the two following matrices, depending on

which bit is the control bit:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , or CNOT =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .
5

Figure 1.2: CNOT-gate

With the CNOT-gate and various single qubit gates, we can generate any kind of

unitary gates, and we are ready to move on.

6

Chapter 2

Quantum Image Encoding

2.1 Overview of Image Recognition

Image processing and image recognition play important role in classical computer

vision theory. In classical computing theory, we store the image in computers, apply

machine learning algorithms, and let the computer recognize the image.

In the first step, images are stored as pixel values in classical computers, and high

computational powers are needed to analyze these values. However, with quantum

computers, we need many fewer qubits to store the same information. For example,

given a 2n-by-2n square image, 22n classical bits are needed to store the information

in classical computers. In Flexible Representation for Quantum Images described in

the following, only 2n+1 qubits are needed to store the image in quantum computers.

After storing the image, quantum algorithms are applied to classify the images.

Namely, the tested image is compared to the sample image in multiple ways. After a

series of comparisons, boundary values are set for the machines to classify the tested

image. The details of classifications are further explained in Chapter 3.

In this chapter, we present two well-studied quantum image encoding methods.

We make improvement on implementation of the first encoding method, and we will

use the second encoding method for later chapters.

7

2.2 Flexible Representation for Quantum Images

(FRQI)

2.2.1 Theory

As introduced in [2], Flexible Representation for Quantum Images (FRQI) offers a

way to encode quantum images. In classical computing, images are stored as pixel

representations, and FRQI is a similar method to pixel representations. Specifically,

in FRQI, two types of information are stored: 1) the position of every pixel, and 2)

the color of every pixel.

We would like to indicate that we will be using grayscale as colors in our later

description. However, our θ is a continuous value in FRQI, so we can also map all

colors to this continuous value θ ∈ [0, π/2] according to different colors’ wavelengths.

In that way, we can also encode all colors.

Given a 2n-by-2n image, we integrate the information of this image into a quantum

state |I⟩ as the following:

|I⟩ = 1

2n

22n−1∑
i=0

|ci⟩ ⊗ |i⟩,

where

|ci⟩ = cos θi|0⟩+ sin θi|1⟩.

Here, |i⟩ encodes the position of each pixel; θ = (θ0, θ1, ..., θ22n−1), θi ∈ [0, π
2
] is a

vector that encodes the color of each pixel; |0⟩ and |1⟩ are 2-dimensional basis states

as introduced in Section 1.1. We show an example of a 2-by-2 image with its FRQI

encoding state in Fig. 2.1.

2.2.2 Circuit Implementation and Improvement

The Qiskit Textbook [3] written by the IBM Qiskit team provides a sample quantum

circuit to encode the picture in Fig. 2.1. Their implementation scheme is shown in

8

Figure 2.1: An example of FRQI encoding of a 2-by-2 image.

Fig. 2.2. In Fig. 2.2, we can see the X-gates, H-gates, CNOT-gates, and the Ry-gate,

which is the following:

Ry = e(−i θ
2
Y),

where each θ is individually specified in {θ0, θ1, θ2, θ3} as in the picture. After the

gates, the black boxes with arrows are measurements.

As mentioned in Section 1.1, errors and noises may largely affect the measurement

results. Among all basic gates provided by IBM Qiskit [3], the controlled NOT gate,

or CNOT gate, introduce the most noise. In [4], a detailed analysis of the level of

noise of the CNOT gate using stochastic differential equations is provided.

In current quantum computers, due to technology deficiency, errors in the measure-

ment results largely come from gate noise. Therefore, to let the quantum computers

carry out the tasks with less error and get an accurate experimental result, we use as

few control gates as possible in quantum algorithms.

In quantum circuits, control gates are represented as solid dots. In IBM’s imple-

mentation scheme [3], to encode a 2-by-2 image, 20 control gates are used as depicted

in Fig. 2.2. Here, we offer a better way to encode a 2-by-2 FRQI image as shown in

9

Figure 2.2: FRQI implementation scheme provided by [3]

Fig. 2.3.

In the IBM Qiskit library, the Hadamard gate (denoted H) has the following

operation:

|0⟩ → (|0⟩+ |1⟩)√
2

|1⟩ → (|0⟩ − |1⟩)√
2

;

the rotation gate Ry(θ) is a rotation along the y-axis:

Ry = e(−i θ
2
Y),

where Y is the Pauli matrix,

Y =

(
0 −i
i 0

)
.

In our circuit shown in Fig. 2.3, Ry,1 = Ry(θ0) = e(−i
θ0
2
Y), Ry,2 = Ry(θ1 − θ0) =

e(−i
θ1−θ0

2
Y), Ry,3 = Ry(θ2 − θ0) = e(−i

θ2−θ0
2

Y), Ry,4 = Ry(θ3 − θ1) = e(−i
θ3−θ1

2
Y).

In our method, only 2 single control gates (Ry,2 and Ry,3) and 1 double control

gate (Ry,4) are used. As shown in [5], a double control gate can be decomposed into

basic gates with 6 single control gates. Therefore, our encoding scheme is made up

of 8 control gates and introduces less noises to the system.

10

Figure 2.3: Our improved FRQI implementation scheme with fewer control gates [3]

2.3 Quantum Probability Image Encoding (QPIE)

Besides FRQI, [6] and [3] introduce another way of quantum image encoding, namely,

the Quantum Probability Image Encoding (QPIE). In particular, instead of separately

storing the colors and positions of the pixels, QPIE utilizes the probability amplitudes

of a quantum state to store the pixel values of a classical image [3].

As described in [3], for an image with N pixels, we need

m = ⌈log2N⌉

number of qubits to represent this image. Given an n-by-n picture, we can view the

image in terms of the pixel intensities I :

I = (Iyx)n×n,

where Iyx is the pixel intensity of position (x, y). Then, we normalize this vector I

and get a normalization parameter ci for all pixels:

ci =
Iyx√∑

I2yx

.

For easier notation, let N be the number of qubits we need in this implementation.

11

Figure 2.4: An example of a 2-by-2 image under QPIE representation

Then, the state representing this image, |Img⟩, is represented as

|Img⟩ =
N∑
i=0

ci|i⟩,

where ci is the normalization parameter described above, and |i⟩ represents the posi-

tion of each pixel.

We provide an example in Fig. 2.4 to illustrate a 2-by-2 image under QPIR

representation. We start with image intensity I = (I00, I01, I10, I11), and ci for i =

{0, 1, 2, 3} are the normalization parameters. The resulting encoded state of this

image is

|Img⟩ = c0|00⟩+ c1|01⟩+ c2|10⟩+ c3|11⟩.

In the next section, we will further utilize the QPIR representation to conduct

image recognition under a simplified setting.

12

Chapter 3

Quantum Image Recognition

3.1 Quantum Hadamard Edge Detection (QHED)

and Image Recognition

In [6], an edge detection algorithm is provided to identify the boundary points in an

image. We make use of this edge detection algorithm and develop an algorithm to

determine if two images are similar. First, we introduce the edge detection algorithm:

Quantum Hadamard Edge Detection (QHED).

In classical computing, the worst case of edge detection requires the computer

to consider each individual pixel, and the complexity for most of them is O(2n).

However, in quantum computers, edge detection can be much easier. More specifically,

the algorithm utilizes the action of H-gate, and it has complexity O(1).

In QHED, a more sophisticated way (using an auxiliary qubit) to implement the

Hadamard gate algorithm is provided; details can be found in [6]. In the following,

we describe a simplified QHED algorithm without the auxiliary qubit.

Given an N -pixel image, we first encode our picture by the QPIE representation

described in Section 2.3, and we get an encoded state of | Img⟩ =
∑N−1

i=0 ci|i⟩. Let

I2n−1 be an identity matrix with size 2n−1. Then, we apply a Hadamard gate to the

13

last qubit, which has the following unitary matrix:

I2n−1 ⊗H0 =
1√
2



1 1 0 0 . . . 0 0
1 −1 0 0 . . . 0 0
0 0 1 1 . . . 0 0
0 0 1 −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1
0 0 0 0 . . . 1 −1


.

After applying the Hadamard gate, we obtain the following vector:

(I2n−1 ⊗H0) ·



c0
c1
c2
c3
...

cN−2

cN−1


→ 1√

2



c0 + c1
c0 − c1
c2 + c3
c2 − c3

...
cN−2 + cN−1

cN−2 − cN−1


.

Note that the entries (ci − ci+1) is the difference between two consecutive pixels.

Also, all entries of the form (ci − ci+1) are located at the even entries. Therefore,

after measurement of all qubits, we only need to look at cases where the last qubit

is 1 (i.e. only look at cases in form of | ∗ ... ∗ 1⟩). If the difference is large, then we

admit that there is an edge between the two consecutive pixels.

In [6], the author presents a computer simulation result of the edge detection of a

picture in Fig. 3.1.

3.2 Applications to Image Recognition

We then describe how can this simplified QHED be applied to detect whether two

images are similar. Given a sample image and a tested image, we cut the 2-D image

into horizontal and vertical 1-D stripes. Then, we stack the stripes together, with

stripes from the tested image and sample images interlacing with each other.

Then, we use QHED to detect the difference between horizontal stripes and ver-

tical stripes. An illustration is included in Fig. 3.2. Here, {a, b} represents the rows

14

Figure 3.1: An example of edge detection algorithm

of the sample image, and {c, d, e, f} represents the columns of the sample image.

Similarly, {1, 2} are the rows of the tested image, and {3, 4, 5, 6} are the columns of

the tested image.

After stacking the rows and columns vertically and horizontally, we conduct QHED

on both cases. The arrows between stripes indicate the consecutive pixels for which

comparisons are made. Therefore, we can know pixel-by-pixel what positions are

different between the two images.

We can also define a threshold value to determine if two images are similar. If the

differences are large for several positions, then we may claim that the two images are

not similar.

Furthermore, rotations may be used on images with the rotation matrix:

R =

[
cos θ − sin θ
sin θ cos θ

]
.

Specifically, for a pixel at the (x, y) position of the image, we may conduct rotation

by multiplying this rotation matrix on the left of the vector v =

[
x
y

]
:

Rv =

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
=

[
x cos θ − y sin θ
x sin θ + y cos θ

]
.

15

Figure 3.2: Illustration of horizontal and vertical stripe cutting

16

Chapter 4

Experiments

In this chapter, we present our experimental result by using the IBM Qiskit Quantum

Computer. IBM Qiskit is a python package that enables people to conduct experi-

ments on IBM quantum computers from everywhere. To first encode the image, we

can easily make the initial state to the QPIE state by the initialization function in

IBM Qiskit [3].

4.1 Theory of Superconducting Quantum Computer

Superconducting quantum computer uses superconducting electronic circuit to im-

plement quantum computing. In a superconductor, the basic charge carriers are pairs

of electrons, Cooper pairs, instead of single electrons. Cooper pairs are bosons, with

integer total spin, and they occupy a single quantum energy level. At a very low

temperature, all bosons occupy the lowest quantum state, and this effect is known as

the Bose-Einstein condensate.

In a superconducting quantum computer, there are tree types of qubit archetypes:

1) phase; 2) charge; 3) flux. Here, the two states of qubit, |0⟩ and |1⟩ are mapped to

different states of the physical systems, like the quantized energy levels, or the quan-

tum superpositions. For example, the charge qubit archetype uses different energy

level of the system, which is an integer number of Cooper pairs on a superconducting

17

Figure 4.1: A charge qubit archetype

island. Fig. 4.1 shows a charge qubit, with the dashed area as the superconducting

island.

Every single qubit gate is a rotation, which can be done by microwave pulses.

When two qubits are coupled, they are connected by an intermediate electrical cou-

pling circuit, and this can be done by capacitors.

4.2 Experiment with IBM Qiskit

Before we start to explain our experiment result, we would like to remark that IBM

Qiskit is a open access python package that enables the general public to conduct

quantum computation in IBM’s quantum computers. In every experiment conducted,

1024 rounds of measurements are done, and the result is presented in bar plot, and

the number on the top shows the normalized probability of a certain state shows up

in the measurement. For example, if 0.5 shows up on a bar chart of |10⟩, then out of

1024 experiments, there are a total of 512 experiment that ends up with measurement

result |10⟩.

18

4.2.1 Simple case with a 2-by-2 image

First, we perform our algorithm on a simple case with a 2-by-2 image shown in Fig.

4.2, and we wonder if IBM Qiskit quantum computer can identify the difference

between pixels. Specifically, this image corresponds to the following matrix:[
c1 c2
c3 c4

]
=

[
1 1
1 0

]
.

Then, we conduct a horizontal scan, which means we compare c1, c2, and we compare

c3, c4.

The circuit implementation of this 2-by-2 image is shown in Fig. 4.3, where the

“init” block is the initialization function in Qiskit, which helps us prepare the initial

state. Then, the IBM Qiskit simulation result of this circuit is presented in Fig. 4.4.

In the measurement result, the |10⟩ position corresponds to c3 + c4, and the |11⟩

position corresponds to c3−c4. Since we only care about the difference between pixels,

we ignore |10⟩ and take only |11⟩ into account. We would expect |01⟩ to be zero, and

|11⟩ to be nonzero, so the simulation matches our expectation. Therefore, we are

ready to conduct actual experiment using picture in Fig. 3.2.

4.2.2 Experiments using IBM Qiskit

Here, we compare the horizontal stripes and vertical stripes according to the scheme

shown in Fig. 3.2. The encoded image of horizontal scan is shown in Fig. 4.5, and

the encoded image of vertical scan is shown in Fig. 4.6.

The results of the measurement made by IBM Qiskit quantum computers are

shown below. Fig. 4.7 is the result for horizontal scan, and Fig. 4.8 is the result for

vertical scan. When each task is sent to Qiskit quantum computers, there are 1024

measurements done in the quantum computers, and the resulting chart shown the

percentages of each state appeared in measurements among all of the possible states

19

Figure 4.2: A 2-by-2 image to test our algorithm.

Figure 4.3: The circuit of testing the 2-by-2 image in Fig. 4.2.

in 1024 measurements. Therefore, reading from the height of the result graph, we can

roughly know the probability of obtaining each state from a certain circuit diagram.

From the horizontal scan result, we can see that the |0001⟩ state stands out from

all other states with ending qubit = 1. From the vertical scan result, we can see that

the |0101⟩ state stands out by a small amount from all other states with ending qubit

= 1. We do not expect to see |1101⟩ being the largest among all states with last

qubit = 1, but |1101⟩ is actually the largest. Therefore, there are large errors within

measurements.

20

Figure 4.4: The IBM Qiskit simulation of the circuit shown in Fig. 4.3.

Figure 4.5: Horizontal scan according to Fig. 3.2

4.3 Improvements

Since we encode the image as a vector with entries (ci + ci+1) and (ci − ci+1), when

we do measurement each time, there may be high possibility that a state would fall

21

Figure 4.6: Vertical scan according to Fig. 3.2

Figure 4.7: Horizontal scan result.

into (ci + ci+1). Since the encoding method gives us a vector with all nonnegative

entries, we have ci+ ci+1 > ci− ci+1. Therefore, it may not be easy to directly see the

22

Figure 4.8: Vertical scan result.

difference between ci and ci+1 in our measurement.

Therefore, we would like to have a way to ignore the large positive entries (ci+ci+1).

In our pre-treatment of the image, we can do modulo-2 arithmetic to reduce the

amplitude of the positive entries (ci + ci+1). For example, if we want to compare two

similar pixels c1 = 1 and c2 = 1, then c1 + c2 = 0 mod 2, and c1 − c2 = 0. Therefore,

we can reduce the amplitude of the positive entries (ci + ci+1), and we can better see

the difference in (ci − ci+1).

23

Chapter 5

Conclusion

Here, we would like to discuss the advantage and disadvantages of our algorithm.

5.1 Advantages

Our image recognition algorithm has complexityO(1), since it only uses one Hadamard

gate. Thus, this algorithm is fast to compare two images and determine whether they

are similar. Even though it is a simple algorithm, it is powerful and has result better

than many other image encoding methods.

5.2 Disadvantages and Possible Improvements

Since our algorithm compare two images by taking horizontal and vertical stripes,

it requires some pre-treatment to the sample and tested images. Therefore, it is a

bit complicated. It would be easier if we can directly encode two images into the

quantum circuit and compare horizontal and vertical stripes at once.

One possible improvement of this algorithm is conducting more rounds of exper-

iments (more than 1024 rounds each time), and we may get a clearer result among

all measurements with last qubit = 1. Also, we can set a range for each pixel. For

example, if the intensity ¿ 0.5, we set it to 1; if intensity ¡ 0.5, we set it to 0. Then, the

edge detection algorithm can easily tell the difference between 1 and 0. This method

24

would work best if the pictures are almost clear black and white.

Also, when we encode images into quantum state, we only use real numbers as

entries here. However, we can also use complex number with real and imaginary

parts. The probability of getting this state as a measurement result is the square of

the absolute value of the complex number. Therefore, we may have more freedom or

develop a better algorithm when we take imaginary parts into account.

25

References

[1] M. Nakahara and T. Ohmi. Quantum Computing: From Linear Algebra to Phys-
ical Realizations. CRC Press, 2008. isbn: 978-0-7503-0983-7.

[2] F. Yan and S. E. Venegas-Andraca. Quantum Image Processing. Springer, 2020.
isbn: 978-981-32-9330-4.

[3] MD SAJID ANIS et al. Qiskit: An Open-source Framework for Quantum Com-
puting. 2021. doi: 10.5281/zenodo.2573505.

[4] Angelo Bassi and Dirk-André Deckert. “Noise gates for decoherent quantum
circuits”. In: Phys. Rev. A 77 (3 2008), p. 032323.

[5] Vivek V. Shende and Igor L. Markov. On the CNOT-cost of TOFFOLI gates.
2008. arXiv: 0803.2316 [quant-ph].

[6] Xi-Wei Yao et al. “Quantum Image Processing and Its Application to Edge
Detection: Theory and Experiment”. In: Phys. Rev. X 7 (3 2017), p. 031041.

26

https://doi.org/10.5281/zenodo.2573505
https://arxiv.org/abs/0803.2316

	Abstract
	1 Introduction
	1.1 Background
	1.2 Basics of Quantum Computation
	1.3 Basic Unitary Gates
	1.3.1 Single Qubit Gates
	1.3.2 Entanglement of Qubits
	1.3.3 Multiple Qubit Gates

	2 Quantum Image Encoding
	2.1 Overview of Image Recognition
	2.2 Flexible Representation for Quantum Images (FRQI)
	2.2.1 Theory
	2.2.2 Circuit Implementation and Improvement

	2.3 Quantum Probability Image Encoding (QPIE)

	3 Quantum Image Recognition
	3.1 Quantum Hadamard Edge Detection (QHED) and Image Recognition
	3.2 Applications to Image Recognition

	4 Experiments
	4.1 Theory of Superconducting Quantum Computer
	4.2 Experiment with IBM Qiskit
	4.2.1 Simple case with a 2-by-2 image
	4.2.2 Experiments using IBM Qiskit

	4.3 Improvements

	5 Conclusion
	5.1 Advantages
	5.2 Disadvantages and Possible Improvements

	 References

