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Abstract

Chiral domain wall fermions in lattice QCD have similar formulations to the

physics of the quantum Hall effect. We study the correspondence between the exis-

tence of chiral edge modes in the presence of domain wall defects of Wilson fermions

on a rectangular lattice and the Chern-Simons levels across the defects. We verify the

computation of the Chern-Simons level of a Wilson fermion on a 2 + 1 dimensional

rectangular lattice with 1+1 dimensional defects. We then generalize the calculations

to a 4 + 1 dimensional lattice and verify these procedures. We also present a naive

attempt to compute the Chern-Simons level in 1 + 1 dimensions and show that the

results are incorrect as the Chern-Simons theory is not defined in even dimensions.



Chapter 1

Introduction

The goal of this paper is to study the correspondence between the existence of chiral

edge modes in the presence of domain wall defect of Wilson fermions on a rectangu-

lar lattice and the Chern-Simons levels across the defects. In this chapter, we first

introduce the key concepts relevant to our research and briefly go through the history

of constructing chiral fermions on the lattice. Following Sen’s work [1], in chapter 2

we verify the computation of the Chern-Simons level of a Wilson fermion on a 2 + 1

dimensional rectangular lattice with 1 + 1 dimensional defects. Then, we perform the

same computations in 1 + 1 dimensional rectangular lattices and show that this naive

attempt yields trivial values of trace calculation, since the current Chern-Simons the-

ory is not defined in even dimensional Euclidean spaces. Finally, we generalize these

calculation procedures to 5 dimensional spaces and show that they correspond to our

expected formula.

1.1 Terminologies

The study of fundamental particles and the Standard Model describing their relations

has been of interests to physicists for decades. One reason is that the fundamental par-

ticles are the building blocks of everything in the visible universe, i.e., everything that

exists is made up of them. Another reason is that the Standard Model incorporates
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the electromagnetic, strong and weak nuclear forces, three of the four fundamental

forces of nature, and thus has become the most successful unifying theory so far.

The study of particles boils down to the study of their quantum properties, such as

mass, charge, spin or flavor. Among them, chirality, for its significant role in many

quantum phenomena, has drawn much attention. The chirality of a particle is defined

by whether it transforms in the right- or left-handed representation of the Poincaré

group, whose unitary irreducible representations characterize different particles. For

example, the chirality for a Dirac fermion ψ (a spin 1
2

particle) is defined through the

projection operators consisting of the operator γ5, which projects the fermion field

into its left- or right-handed component. A theory of Dirac fermions is said to have

chiral symmetry if its Lagrangian is invariant under parity transformation (flip in

the sign of all spatial coordinates). If a theory is asymmetric with respect to chiral-

ities, it is called a chiral theory, and a vector theory if symmetric. For instance, the

Electroweak theory, a unified description of two fundamental interactions of nature –

electromagnetism and the weak interaction, is a chiral theory because only left-handed

(whose directions of spin and motion are opposite) fermions or right-handed (whose

directions of spin and motion are the same) antifermions (with the same mass, spin

and mean lifetime but with charge, parity, strangeness and other quantum numbers

flipped in sign) are observed to engage in the charged weak interaction. Quantum

Chromodynamics (the theory of the strong interaction between quarks mediated by

gluons), on the contrary, is a vector theory, since the coupling between quarks and

gluons have no preference on chirality.

Next, we will introduce the lattice gauge theory. The term gauge actually refers to

mathematical tricks that regulate redundant degrees of freedom in the Lagrangian of

a physical system. A field theory becomes a gauge theory if its Lagrangian does not

change under local transformations according to certain smooth families of operations
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(Lie groups). The transformations between different gauges are called gauge transfor-

mations, and they form a Lie group, often referred to as the symmetry group or the

gauge group of the theory. In continuous spacetime, calculations in non-perturbative

gauge theory involve evaluating an infinite-dimensional path integral, which is compu-

tationally intractable. To solve this problem, we discretize the spacetime by working

on lattices, and the path integral becomes finite-dimensional, which can be evaluated

by stochastic simulation methods such as the Monte Carlo method.

Intuitively, when addressing multi-scale problems, we could only work with proper

degrees of freedom that are relevant to the scales involved in our problem. For ex-

ample, in quantum mechanics, we don’t need to consider the influence of subatomic

structures of particles to make a precise prediction of experiments. This is the main

idea of Effective Field Theory [2]. In this research, it is explicitly demonstrated

through the correspondence between the net chiralities of the Wilson fermion (high

energy theory) across domain walls on a rectangular lattice and the Chern-Simons

level (low energy theory) effective theory across the wall. This process involves inte-

grating out a heavy Wilson fermion in the action.

Two adjoining structures or spaces are said to have Domain walls or topological

defects at the boundaries where the joins are in some way “out of phase”. Math-

ematically, it means that the topological solutions are homotopically distinct from

vacuum solutions, i.e., the two functions cannot be continuously deformed into each

other. For example, observe from Fig. 1.1 that the telephone wire is out of phase

since the orientations are different at the knot.

1.2 History Review

Lattice QCD is a lattice gauge theory formulated on a discrete Euclidean space-time

grid [3]. As a numerical method, Lattice QCD simulations are necessarily calculated
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Figure 1.1: telephone wire

with finite lattice spacing. However, any non-zero lattice spacing a breaks the chiral

symmetry of QCD, which can be recovered together with O(4) symmetry in the limit

a → 0. Then, through Wick rotation, Lorentz symmetry can be recovered, leading

to the correct target theory. Thus, the continuum construction of chiral fermions are

of great interest. Wick rotation is a method of finding a construction in Minkowski

space from a corresponding construction in Euclidean space, in a way that involves

substituting a real-number variable by an imaginary-number variable. It is motivated

by the observation that the Minkowski metric convention (−1,+1,+1,+1) and the

four-dimensional Euclidean metric are equivalent if the time coordinate is allowed

to take imaginary values. As a non-perturbative approach to solving quantum chro-

modynamics (QCD), lattice QCD is so established that it serves as a framework for

explaining many non-perturbative phenomena. However, simulating chiral fermions

on the lattice had troubled physicists for twenty years, from the early 1970s to the

early 1990s [4].

Naive attempts to put fermionic fields on a lattice in continuum theory result in

the appearance of spurious states and an increase in the number of fermion species by

2d, where d is the dimension of space-time, with a net chirality of zero. This is referred

as the fermion doubling problem [5], caused by extra poles (remember that poles in

the complex energy plane indicate the existence of particles) of the sine term in the
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Dirac propagator when approximated around the Brillouin corners. Traditionally, it

has been addressed using Wilson [6] or Kogut-Susskind [7] fermions, however at the

expense of exact chiral symmetry at finite lattice spacing.

This problem was addressed in 1992 when Kaplan [8] proposed an alternative

lattice fermion method, domain wall fermions (DWF), which adopted a continuum

construction in lattice gauge theory. Kaplan showed that chiral fermions in 2n dimen-

sions may be simulated by Dirac fermions in 2n + 1 dimensions with a domain wall

defect in the mass parameter. Lattice regularization introduces doublers which leads

to zero Chern-Simons level (defined in the next chapter). Since the original 2n + 1

dimensional theory is vector-like, the doublers could be removed by introducing a

gauge invariant Wilson term, leading to a nontrivial Chern-Simons theory.

A later application [9] of the domain wall chiral fermion technique showed that the

Chern-Simons level induced by Wilson fermions with a mass coupling to a domain wall

on an odd-dimensional d = 2n+ 1 lattice can jump discontinuously at d+ 1 different

values for the mass m, as a function of m/r, where r is the Wilson coupling constant.

Commensurate changes in the number and chirality of zero modes on the domain wall

occur with these jumps [10] in order to satisfy the anomaly inflow condition, which

states that the calculation of chiral anomaly (nonconservation of a chiral current)

cannot depend on the scale chosen for the calculation.

A recent paper [1] explored this phenomenon in detail in the context of a 2 + 1

dimensional rectangular lattice with anisotropic lattice spacing. In particular, Sen

showed 1): in the absence of a domain wall in the fermion mass, a 1 + 1 dimensional

defect can still exhibit chiral zero-mode solutions across which lattice spacing changes

abruptly, and 2): on a uniform rectangular lattice, discrete changes in the number

and chirality of zero modes occur on a domain wall in the fermion mass, as a function

of lattice anisotropy.
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Chapter 2

Chern-Simons Theory on a cubic
lattice

In this section, we will first review the topological phases produced by a Wilson

fermion on a cubic lattice coupled to a U(1) lattice gauge theory, and then discuss

how the results may change on a rectangular lattice.

2.1 The 3-Dimensional Case

Consider a heavy Wilson fermion of mass m and Wilson parameter r coupled to

a U(1) lattice gauge theory in 2 + 1 dimensions. We start with the Dirac-Wilson

operator on an infinite lattice with lattice spacing aµ in the direction µ.

DW =
3∑

µ=1

γµ∂µ +m+
r

2

3∑
µ=1

∆µ (2.1)

where ∂µ is the lattice derivative ∂µ =
δz,z+aµ−δz,z−aµ

2aµ
and ∆µ is the lattice Laplacian

∆µ =
δz,z+aµ+δz,z−aµ−2δz,z

a2µ

To understand how the topological transitions occur, consider first the Wilson

fermion propagator given by

S−1(p) =
d∑

µ=1

iγµ
sin (pµa

µ)

aµ
+m+ r

d∑
µ=1

cos (pµa
µ)− 1

(aµ)2
, (2.2)
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where d = 3 denotes the space-time dimension. In the long wavelength (low energy)

limit for the weak gauge field, the Wilson fermion can be integrated out to arrive at

the low energy effective theory for the U(1) gauge field, which yields a Chern-Simons

action for the gauge field: Seff = −i c
4π

ΓC.S. with

ΓC.S. = εα1β1α2

∫
d3xAα1∂β1Aα2 . (2.3)

The Chern-Simons level is an integer that characterizes the simple Lie group which

specifies the low energy effective theory, i.e., the Chern-Simons theory. It is denoted

by the constant ‘c’ and can be calculated from the Feynman diagram (Fig. 2.1) as

c = −4πεα1β1α2

2(3!)
∂(q1)β1

∫
BZ

d3p

(2π)3
Tr(S(p)Λα1(p, p− q1)S(p− q1)Λα2(p+ q2, p)) |qi=0

(2.4)

where gauge invariance implies that the photon coupling satisfies the Ward identity

Λµ(p, p) = −i∂pµS−1(p). (2.5)

Then, the Chern-Simons level c can be reformulated using fermion propagator as

c =
εµ1µ2µ3
2(3!)

∫
BZ

d3p

(2π)3
Tr([S(p)∂pµ1S

−1(p)][S(p)∂pµ2S
−1(p)][S(p)∂pµ3S

−1(p)]). (2.6)

Figure 2.1: The one-loop feynman diagram producing the Chern-Simons level.
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We begin by calculating the trace in Eq. (2.6). First note that

∂pµS
−1(p) = iγµ cos (pµa

µ)− r sin (pµa
µ)

aµ
.

Now, let’s compute S(p) by taking

M = m+ r
d∑

µ=1

cos (pµa
µ)− 1

(aµ)2
.

Then,

S(p) =
1

d∑
µ=1

iγµ sin (pµaµ)

aµ
+M1

=

d∑
µ=1

−iγµ sin (pµaµ)

aµ
+M1

(
d∑

µ=1

iγµ sin (pµaµ)

aµ
+M1)(

d∑
ν=1

−iγν sin (pνaν)
aν

+M1)

=

d∑
µ=1

−iγµ sin (pµaµ)

aµ
+M1

d∑
µ=1

sin 2(pµaµ)

(aµ)2
+M21

.

(2.7)

Since we are in Euclidean space, we don’t have Einstein’s summation convention.

However, we can define a similar notation without causing problems. Denote /p = γµpµ

to be the sum in equation (2), where pµ = sin (pµaµ)

aµ
and p2 = p2

1+p2
2+p2

3 =
d∑

µ=1

sin 2(pµaµ)

(aµ)2
.

Then, S(p) can be rewritten as

S(p) =
−i/p+M1

p2 +M2
. (2.8)

To compute the Chern-Simons level c from Eq. (2.6), we expand the momentum

space integral near the Brillouin zone (BZ) corners. We first examine the case where

all components of the momenta equal to 0. Taking the approximation first, the Wilson

fermion propagator becomes

S−1(p) = m+
d∑

µ=1

iγµpµ. (2.9)
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We then have ∂pµS
−1(p) = iγµ and

S(p) =
−i/p+m

p2 +m2
. (2.10)

Finally, let’s consider the trace. At first, we performed the calculations using the

Mathematica package FeynCalc, but the results didn’t fit our expectation. We later

discovered that this was because FeynCalc assumed the calculations were done in 4-d

Minkowski spaces, so it assumed there were 4 gamma matrices. Having no convenient

package to use, we decided to define gamma matrices explicitly. Since we are in the

3-d Euclidean space, they can be defined as Pauli matrices.

Now, let

H = [S(p)∂pµ1S
−1(p)][S(p)∂pµ2S

−1(p)][S(p)∂pµ3S
−1(p)],

and consider µi = i, i ∈ {1, 2, 3}. Plugging in everything, we have

H =
−i(−i/p+m)σµ1(−i/p+m)σµ2(−i/p+m)σµ3

(p2 +m2)3
. (2.11)

Now we are ready to perform the trace calculations in Eq. (2.6). Taking into

account the Levi-Civita symbol εµ1µ2µ3 , there are only six combinations of indexes

that yield no-zero values. Mathematica gives the following result (Fig. 2.2). The C.S.

is expected to be

c =
∑
k,α

∫
dΩ

(−1)k
d3p

2π2

(m− 2 r
a2l k

)

(p2 + (m− 2 r
a2l k

)2)2
, (2.12)

where k stands for the number of components of the momenta equal to π while the

rest equal to 0, and α = 1, · · · ,
(
d
k

)
counts for the permutations. We can see that our

calculation meets the expectation, taking k = 0 in Eq. (2.12).

To verify our computation procedures, we also consider the k = 1 case. Since
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Figure 2.2: 3d C.S. level at k=0

sinx = −x expanded at x = π, the propagator and trace become

S−1(p) = M +
2∑

µ=1

iγµpµ − iγ3,

S(p) =
−i/p+M

p2 +M2
,

H =
i(−i/p+M)σµ1(−i/p+M)σµ2(−i/p+M)σµ3

(p2 +M2)3
,

in the case where only the third coordinate is non-zero and equal to π. Note that

M = m − 2 r
a2l k

and /p =
2∑

µ=1

iγµpµ − iγ3. Mathematica yields the following result

(Fig. 2.3), which is the same as taking k = 1 in Eq. (2.12). Following the similar

procedures, the cases k = 2, k = 3 are verified.

2.2 The 2-Dimensional Case

One might think that the generalization of these calculations to arbitrary dimension is

straightforward: just change d and find the corresponding gamma matrices satisfying

the Clifford algebra anti-commutation relation. However, this naive attempt is incor-
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Figure 2.3: 3d C.S. level at k=1

rect for the following reason. Kaplan’s original lattice chiral fermion method [9] was

formulated in odd dimensional (2n+1) lattice theory, and Witten’s foundational work

in 1980’s on Wilson loops in Chern-Simons theory was also based on odd-dimensional

spacetime [11]. In his formulation of the C.S. theory, the dimension of spacetime must

be odd [12], for reasons from differential geometry and Lie algebra [13]. Theoretically,

one could introduce a new definition of C.S. theory in even dimensions, though there

are very few studies of this to date. The current formulations employ knowledge from

non-commutative geometry and Riemannian spin maniforlds, which are beyond the

scope of this work, so I will just share the references for readers’ interests [14, 15].

In this section, I will naively set d = 2 and perform the similar calculations from

the previous section to show how this attempt could be incorrect. Through these

analyses, we hope to shine light on how future work could be done to construct a

2-d C.S. theory, which could be very useful since it should be easier to simulate

numerically.

We begin by identifying the gamma matrices in 1 + 1 dimensions. First, observe
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that Cl(0, 2) ∼= R(2), where R(2) is the algebra of 2 × 2 real matrices. It turns out

that there is a unique two-dimensional irreducible representation of Cl(0, 2), and the

two gamma matrices can be identified as

γ1 =

(
1 0
0 −1

)
, γ2 =

(
0 1
1 0

)
.

Following similar procedures and notations, the formula to the compute the C.S. level

is given by

c =
εµ1µ2
2(2!)

∫
BZ

d3p

(2π)3
Tr([S(p)∂pµ1S

−1(p)][S(p)∂pµ2S
−1(p)].

where is the 2-d Levi-Civita symbol defined as

εµ1µ2 =


+1, if (i, j) = (1, 2)
−1, if (i, j) = (2, 1)

0, if i = j.

Then, the trace H can be written as

H =
−i(−i/p+m)σµ1(−i/p+m)σµ2

(p2 +m2)3
,

H =
(−i/p+M)σµ1(−i/p+M)σµ2

(p2 +M2)3
,

respectively for k = 0, 1.

The trace calculation using Mathematica yields trivial results for both cases

(Fig. 2.4). Further examinations show that the trace still equals zero for other BZ

corner approximations. This may suggest that we are using the wrong formula, and

our naive attempt fails.

2.3 The 5-Dimensional Case

According to Kaplan [8], in odd dimensions 2n+ 1 the C.S. level is defined by

c =
(−i)nεµ1···µ2n+1

(n+ 1)(2n+ 1)!

∫
BZ

d2n+1p

(2π)2n+1
Tr([S(p)∂pµ1S

−1(p)] · · · [S(p)∂pµ2n+1
S−1(p)]).

(2.13)
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Figure 2.4: 2d C.S. levels at k=0,1

In 5-d, the Levi-Civita symbol εµ1···µ5 is given by [16]

εµ1···µ5 =
1

288
(µ2−µ1)(µ3−µ1)(µ4−µ1)(µ5−µ1)(µ3−µ2)(µ4−µ2)(µ5−µ2)(µ4−µ3)(µ5−µ3)(µ5−µ4),

and the gamma matrices can be defined as

γ1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , γ2 =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 , γ3 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 ,

γ4 =


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

 , γ5 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

We first examine the case where all components of the momenta equal to 0. Taking

the approximation first, recall that the Wilson fermion propagator and its derivative
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become

S−1(p) = m+
5∑

µ=1

iγµpµ,

S(p) =
−i/p+m

p2 +m2
,

∂pµS
−1(p) = iγµ,

H =

i
5∏
j=1

(−i/p+m)γµj

(p2 +m2)5
.

The trace calculation (taking into account the permutations) using Mathematica

gives the result 480m (m2 + p2)
2
. Now consider the case where only 1 momentum

component is not 0, say p5. Following the same notations as before, we have

S−1(p) = M +
4∑

µ=1

iγµpµ − iγ5,

S(p) =
−i/p+M

p2 +M2
,

H =

−i
5∏
j=1

(−i/p+M)γµj

(p2 +M2)5
.

Mathematica gives the result −480m (m2 + p2)
2
. Following the same procedures, the

cases k = 1 up to 5 are verified. We attach the codes in appendix. However, there’s

one thing worth noticing: although the form of our calculations of C.S. level fit the

expectation (Eq. (2.12)), it differs by a constant factor 480
(2+1)(4+1)!

= 480
360

. This may

lead to non-integer value of the C.S. level after plugging in the lattice anisotropy as
a

and the Wilson parameter r
as

, which are forbidden in the Chern-Simons theory. We

leave this analysis to future work.
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Chapter 3

Conclusion and Future Work

In this paper, we give an overview of the attempts to put fermionic fields on a lattice

and then introduce the construction of chiral fermions in lattice QCD. We explicitly

calculate the Chern-Simons level in 3 dimensional Euclidean space, verifying Sen’s

results, and generalize these procedures to 5 dimensions, building on Kaplan’s work.

However, the construction of Chern-Simons theory in even dimensional Euclidean

space fails in this formulation, and entails new definitions using knowledge from non-

commutative geometry and Riemannian spin maniforlds. We show this by naively

changing the dimension d = 3 to 2 and defining the corresponding gamma matrices

that satisfy the Clifford algebra anti-commutation relation. Trivial results of the trace

calculations at all Brillouin corners approximations indicate the construction is ill-

defined. In future, if a 2 dimensional construction were established, it would become

a very useful toy model for us to understand the theory, as lattice QCD simulations

on computer would be fast. Finally, although the form of our calculations of Chern-

Simons level in 5-d fit the expectation, it differs by a constant factor. This may lead

to non-integer value of the Chern-Simons level after plugging in the lattice anisotropy

as
a

and the Wilson parameter r
as

, which are forbidden in the Chern-Simons theory.

Once future work yields correct values of the Chern-Simons level, we are curious

to see outcome of lattice QCD calculations, because the domain wall becomes a 4
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dimensional space, on which we have many established results.
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Appendix A

Mathematica codes for the 5-d
trace calculations
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Define Levi-Civita Symbol in 5d
In[1]:= eps[i1_, i2_, i3_, i4_, i5_] := 1 / 288 * (i2 - i1) (i3 - i1)

(i4 - i1) (i5 - i1) (i3 - i2) (i4 - i2) (i5 - i2) (i4 - i3) (i5 - i3) (i5 - i4)

In[2]:= eps[1, 2, 3, 4, 2]

Out[2]= 0

In[3]:= temp = 0;

⋯

Do[
如果
If[eps[i, j, k, m, n]  0, temp = temp + 1], {i, 5}, {j, 5}, {k, 5}, {m, 5}, {n, 5}];

打印
Print[temp + 120  5^5]

True

Define Gamma matrices in 5d
In[4]:= γ1 = {{0, 0, 0, 1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {1, 0, 0, 0}}

Out[4]= {{0, 0, 0, 1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {1, 0, 0, 0}}

In[5]:= γ2 = {{0, 0, 0, -

虚数单位
I}, {0, 0,

虚数单位
I, 0}, {0, -

虚数单位
I, 0, 0}, {

虚数单位
I, 0, 0, 0}}

Out[5]= {{0, 0, 0, -}, {0, 0, , 0}, {0, -, 0, 0}, {, 0, 0, 0}}

In[6]:= γ3 = {{0, 0, 1, 0}, {0, 0, 0, -1}, {1, 0, 0, 0}, {0, -1, 0, 0}}

Out[6]= {{0, 0, 1, 0}, {0, 0, 0, -1}, {1, 0, 0, 0}, {0, -1, 0, 0}}

In[7]:= γ4 = {{0, 0, -

虚数单位
I, 0}, {0, 0, 0, -

⋯

I}, {

虚数单位
I, 0, 0, 0}, {0,

虚数单位
I, 0, 0}}

Out[7]= {{0, 0, -, 0}, {0, 0, 0, -}, {, 0, 0, 0}, {0, , 0, 0}}

In[8]:= γ5 = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}}

Out[8]= {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}}

In[9]:= γ = {γ1, γ2, γ3, γ4, γ5}

Out[9]= {{{0, 0, 0, 1}, {0, 0, 1, 0}, {0, 1, 0, 0}, {1, 0, 0, 0}},

{{0, 0, 0, -}, {0, 0, , 0}, {0, -, 0, 0}, {, 0, 0, 0}},

{{0, 0, 1, 0}, {0, 0, 0, -1}, {1, 0, 0, 0}, {0, -1, 0, 0}},

{{0, 0, -, 0}, {0, 0, 0, -}, {, 0, 0, 0}, {0, , 0, 0}},

{{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}}}

In[10]:= γ〚1〛.γ〚2〛 + γ〚3〛.γ〚4〛

Out[10]= {{2 , 0, 0, 0}, {0, -2 , 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}

In[11]:=

For循环
For[i = 1, i < 6, i++,

For循环
For[j = 1, j < 6, j++, x = γ〚i〛.γ〚j〛 + γ〚j〛.γ〚i〛;

打印
Print[x  2 *

克罗内克尔δ函数
KroneckerDelta[i, j] *

单位矩阵
IdentityMatrix[4]]]]
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True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

Perform the Trace calculation (all 0 momentum)
Sp = -

虚数单位
I * (γ〚1〛 * p1 + γ〚2〛 * p2 + γ〚3〛 * p3 + γ〚4〛 * p4 + γ〚5〛 * p5) + m *

单位矩阵
IdentityMatrix[4]

Out[ ]= {{m -  p5, 0, - (p3 -  p4), - (p1 -  p2)}, {0, m -  p5, - (p1 +  p2), - (-p3 -  p4)},

{- (p3 +  p4), - (p1 -  p2), m +  p5, 0}, {- (p1 +  p2), - (-p3 +  p4), 0, m +  p5}}

the derivative equal i*γj, see thesis pg.7 eq 2.10.

In[36]:= temp = 0;
Do循环
Do[temp =

temp +

虚数单位
I^5 * eps[i, j, k, p, q] ×

迹
Tr[

虚数单位
I * Sp.γ〚i〛.Sp.γ〚j〛.Sp.γ〚k〛.Sp.γ〚p〛.Sp.γ〚q〛],

{i, 5}, {j, 5}, {k, 5}, {p, 5}, {q, 5}]

In[37]:=

化简
Simplify[temp]

Out[37]= 480 m m2 + p12 + p22 + p32 + p42 + p52
2

2     3+1 D Calculations.nb
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Perform the Trace calculation (1momentumneq 0)
In[43]:= Sp = -

虚数单位
I * (γ〚1〛 * p1 + γ〚2〛 * p2 + γ〚3〛 * p3 + γ〚4〛 * p4 - γ〚5〛 * p5) + m *

单位矩阵
IdentityMatrix[4]

Out[43]= {{m +  p5, 0, - (p3 -  p4), - (p1 -  p2)}, {0, m +  p5, - (p1 +  p2), - (-p3 -  p4)},

{- (p3 +  p4), - (p1 -  p2), m -  p5, 0}, {- (p1 +  p2), - (-p3 +  p4), 0, m -  p5}}

In[47]:= temp = 0;
Do循环
Do[temp =

temp +

虚数单位
I^5 * eps[i, j, k, p, q] ×

迹
Tr[-

虚数单位
I * Sp.γ〚i〛.Sp.γ〚j〛.Sp.γ〚k〛.Sp.γ〚p〛.Sp.γ〚q〛],

{i, 5}, {j, 5}, {k, 5}, {p, 5}, {q, 5}]

In[48]:=

化简
Simplify[temp]

Out[48]= -480 m m2 + p12 + p22 + p32 + p42 + p52
2

3+1 D Calculations.nb     3
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