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Abstract

Isaac Newton’s Philosophiae Naturalis Principia Mathematica (Principia) is one
of the most influential documents in the history of science. Revolutionary for its time,
the Principia is a study of earthly and celestial forces, their behaviors, and the different
types of motion that they create. William & Mary’s Swem Library owns a first-edition
copy of the Principia, unique for its extensive handwritten annotations, which we have
identified partially as content from later editions. This paper investigates the history of
physics, W&M’s copy of Principia, and the annotations written inside, including the
identity of the annotator and the meaning of the shorthand we identified written in the
marginalia. By analyzing the changes between the first and subsequent editions of
Principia, we also investigate how Newton created and developed classical mechanics.
Our contemporary study of Newton's derivation of resistive force and experimentation
with fluids serve to compare the methodology and standards of seventeenth-century
proofs to those of modern day. Through analyzing William & Mary's copy of his
Principia, we are able to explore Newton’s modus operandi to examine the origin and

evolution of classical mechanics.



Chapter One:
How Did We Get Here?

When we think about where discoveries happen, scientists tend to look towards the
outskirts of human knowledge. We push forward on our individual quests to find the
largest, smallest, hottest, coldest, fastest, and slowest. We build bigger machines, invent
newer technology, innovate smarter techniques, all in the pursuit of the hidden truth of

the world around us. In the search for new knowledge, we look forward.

I, however, think that there’s something to be said about looking backward. What

discoveries can we find by looking towards the past, rather than the future?

Historically, the greatest advancements in science occurred in two great intellectual
periods, punctuated by the Middle Ages. The first was instigated by ancient Greek
philosophers around 600 BCE-100 CE, investigating the fundamental essence of nature
and the universe. The second was sparked by the imaginative thinkers of the
Renaissance, who now could analyze the heavens with some mathematics in their
toolbox. This second great intellectual period persists until modern day. But when we
juxtapose today’s science with what the Phonecians were studying, the contrast is black
and white. How did the philosophical mutterings of old men in togas evolve into

quantum chromodynamics, special relativity, and cosmology?

The purpose of this first chapter is to answer this question. My goal is to provide an
overview of the history of physics, from the first inquiries in the philosophy of nature up
until Newton. I want us to see the Principia in its proper historical context so that we
may evaluate the science and mathematics without being obstructed by the reverence of
Newton.



The story that follows is based largely on Julian Barbour’s The Discovery of Dynamics,
along with my own knowledge of antiquity. But before we begin, I must acknowledge
that my degree has constrained my knowledge of history to a specific period of time
within the bounds of the Mediterranean. Advancements in math and physics were surely
made elsewhere in the world, and the Eurocentric perspective that follows would
certainly be enriched by the contributions of Asian, African, and American thinkers. The
history I have learned while studying classical civilizations ends around 600 CE — past
this, I must rely heavily on other sources. Furthermore, even my sources from antiquity
are dubious. The writings from the pre-Alexandrian period (600-400 BCE) have nearly
all been lost and our references to them come from the testimonia of later Greek
authors, who are undoubtedly jaded from the passage of time. I also acknowledge that
the history of physics is well-trodden ground; I have my own analysis and perspective of
antiquity, but I do not claim to till new soil in the Renaissance. My garden blooms in
Chapter III, with my scholarship on Thomas Staughton Savage and the marginalia in
William & Mary’s copy. With these declarations made, let us begin our journey with a
quote Isaac Newton penned in a letter to Robert Hooke in 1675, “If I have seen further,
it is by standing on the shoulder of giants.?” Let us meet the cast of giants bold enough

to withstand the millennia:

I turn first to Thales of Miletus (circa 623-circa 545 BCE). In the sixth century BCE,
Miletus was a thriving merchant town on the western coast of Anatolia, present day
Turkey. Thales is credited with developing some of the most elementary propositions in
geometry; for example, that circles are bisected by their diameter and that the sides of
similar triangles are proportional.® Even more fundamental, Iamblichus of Chalcis
(circa 325 CE) tells us, albeit almost a millennium later, that Thales brought the concept
of numbers as a system of units from Egypt to Greece. While this may or may not be
true, history can certainly look at Thales as a founder of mathematical science. While the
statements and concepts he developed seem trivial and intuitive, their simplicity shows

us that the Greeks are moving into the abstract. They have left the realm of assumptions

! Barbour, Julian B. The Discovery of Dynamics. Oxford University Press, 2001.

2 Newton, Isaac, and Robert Hooke. Isaac Newton Letter to Robert Hooke, 1675.

3 The Mathematics Teacher. “Thales: The First of the Seven Wise Men of Greece.” National Council of
Teachers of Mathematics, vol. 23, no. 2, 1930, pp. 84—86., https://doi.org/10.5951/mt.23.2.0084.



and crossed the threshold into the world of geometric proofs and deductive reasoning.
Geometry before Thales was based on measurement and observations. The problems it
could solve were limited to the tangible, like computing the height of a pyramid or the
distance of a ship from shore. To apply to nonphysical problems, geometry was

abstracted by philosophers through the application of logical thought progressions.

The most famous to do so was Thales’s mentee, Pythagoras (circa 572-497 BCE), who
founded the Pythagorean school of philosophy and mathematics that flourished over the
next century. From Pythagoras, we see the discovery of irrational numbers and the
elevation of mathematical harmony*. Pythagoras claimed that the universe was
composed of numbers and that the relationship between those numbers (i.e. their
ratios) underlies everything humanity can perceive. Purity and harmony were the

threads by which the great tapestry of the universe was woven.

Rival schools of philosophy began to develop across Greece, sponsoring the next
generations of intellectual thought. A few miles north, Heraclitus of Ephesus (circa
536-470 BCE) flipped the existing philosophical script, declaring that nothing in the
world actually persists. Change was the only reality: the world exists in constant flux.
Heraclitus believed that these ceaseless changes, though, occurred in an ordered
manner: a small statement with an enormous impact. This idea foreshadowed the
concept of “laws” in nature that were powerful enough to govern even the universe. The
reactions to such a proclamation spurred the formation of other hypotheses. The Eleatic
school of thought carried Heraclitus’ logic to the extreme, most notably Zeno of Elea’s

(circa 490-430 BCE) famous paradox “proving” that even motion itself was an illusion.

In Thrace, a couple of trailblazing philosophers, Leucippus and his student Democritus
(circa 460-370 BCE), invented a new branch of philosophy that they called atomism.
Atomism claims that the universe is broken up into infinitely many components, or

atoms, made with different shapes and sizes. The unique combinations of shape and size

4 You may note that I make no reference to his famous theorem. There is debate among scholars of
whether Pythagoras should be credited with this theorem, as the rule was in explicit and widespread use
in the Old Babylonian Empire over a thousand years before Pythagoras was born.
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were what accounted for the diversity of observable bodies. Atomism argues that when
you stretch out your hand and feel something, you know that the object is tangible and
real. It defined the void as something non-tangible, but declared that the lack of
sensation was still something real. Therefore, empty space, no-thing, was in its own way
a kind of reality, too. This hypothesis was monumental for the concept of absolute space

— an idea that Newton later formalized — which sparked the development of mechanics.

Enter stage right, Socrates (circa 470-399 BCE), Plato (426-347 BCE), and Aristotle
(384-322 BCE), the three great philosophers that dominated Classical Athens. Socrates
was an eccentric® philosopher whose bizarre ideas attracted a lot of negative attention
from the dominant aristocracy. In 399 BCE, Socrates was put on trial under rather
unconventional charges — ‘not honoring the Gods’ and ‘corrupting the youth of Athens.’
These charges might not have truly been the reason Socrates was on trial®, but his public
denunciation of Zeus and the other Gods in favor of atheism made him inimical to
Athenian society. He was consequently found guilty of his crimes and sentenced to
death. While Socrates had brilliant ideas on ethics and morality, his untimely death
prevented him from exploring the philosophy of nature. Thus, it was the scientific

contributions of Plato and Aristotle that helped shape the future of natural philosophy.

Plato, a student of Socrates, picked up where the atomists left off. He viewed nature as
an abstract and theoretical concept; he disliked philosophy’s emphasis on the material
world and thought that motion could never be comprehended. Plato and the atomists
attempted to explain place and shape using three-dimensional geometry, but struggled

to understand how bodies “switch” between movement and rest. Aristotle, Plato’s

5 Socrates was notoriously ugly: In the Symposium (v. 5-7), Socrates describes how he will win a beauty
contest by defining his beauty as functionalism: “Your eyes see only straight ahead, but mine see also to
the side, since they project...your nostrils look to the ground, but mine flare so as to receive smells from
all sides...my flat nose does not block my vision but allows my eyes to see whatever they wish...”

® It is conceivable that the bizarre charges brought against Socrates were motivated less by the pursuit of
justice and more from a desperate attempt to rid Athens of a public nuisance. Socrates was at first
convicted as guilty of the charges in a relatively close vote (281:220). Socrates responded with his defense
(in Greek, his Apologia, which, despite how the word looks, is not an apology) in which he proposed that
rather than be punished, he instead should be rewarded for his “crimes.” He audaciously demanded of
the jury and prosecutors that he be provided with free meals in the Prytaneion — a public dining hall in
the city center — at the expense of the state. After hearing his request, the jury condemned him to death
by an overwhelming vote of 391:110.



student, cared less about the “switch” and focused instead on instances of movement
versus instances of rest. Aristotle rejected the previous, continuous approach of Plato
and asserted that motion was a phenomenon that had to be studied in subintervals, thus

not reducible to three-dimensional geometry.

Aristotle believed that, with the exception of Plato, none of his predecessors had studied
motion appropriately: they had not carefully enough considered concepts like place and
shape. Writing before the development of trigonometry, Aristotle introduced a concept
of space that was almost exclusively topological. He believed that position was not a
point in Euclidean space, but a place — the place of wine within the bottle, the ship
within the river, etc. Place, however and wherever it might be, was defined by its

material container.

Proper place and natural motion were central ideas of Aristotelian doctrine. The
overarching principle was that everything happened for a specific purpose; nature did
nothing in vain. According to Aristotle, the proper place of the earth was at the center of
the universe. Thus, the falling of a stone could be explained by the striving of earth, the
predominant element of stone, to reach the center of the universe, at the center of our
planet. Similarly, the proper place of fire was on the periphery of the planet, which
explains why it strives to fly upwards. Aristotle defined his four elements by their

characteristic motions:

Let “the heavy” then be that whose nature it is to move towards
the center, “the light” that whose nature it 1is to move away
from the center, “heaviest” that which sinks below all other
bodies whose motion 1is downwards, and “lightest” that which
rises to the top of the bodies whose motion is upwards.’

Thus the ordering: earth, water, air, fire, and with them, the first emergence of a concept

resembling mass.

Although his work was based on phenomena that appeared intuitive, Aristotle is

evidence that infallible intuition can be difficult to develop. With hindsight, we can see

7 De Caelo p. 19 (Book 1, iii, 269b)



that Aristotle’s greatest mistake was failing to appropriately appreciate the empirical
aspects of motion. Plato and the atomists had detailed, moderately complete views on
three-dimensional motion®. Aristotle was revolutionary for having four?, but his ideas
were fuzzy, qualitative, and at times, misinformed. The laws of dynamics and the
relationships between force and acceleration were hidden from Aristotle’s mortalis
visus; it was not until Galileo, who insisted that the world could be conceived with as

much precision in four dimensions as Plato had seen in three, that this veil was eripit’.

In most accounts of the history of mathematics and science, Aristotle and his qualitative
work on dynamics are viewed unfavorably. While Aristotelian physics bears little
resemblance to modern physics, Carlo Rovelli, an Italian physicist, declares that
Aristotelianism is subject to unfair press. He argues that it is misleading to dismiss
Aristotelian physics: “...Contrary to common claims, Aristotle’s physics is
counterintuitive, based on observation, and correct in its domain of validity in the same
sense in which Newtonian physics is correct in its domain."” He proposes a comparison
in relationships between Aristotle’s and Newton’s physics and between Newton’s and
Einstein’s. From our modern perspective, Newton’s model of gravity is only applicable
to a certain set of conditions. Outside this set, his theories are, strictly speaking, wrong.
Aristotle’s observations were based on what he saw with his limited human eye and his
arguments were rooted in a deeply flawed human perspective. Although almost all of his
work was wrong, Aristotle’s spirit of rational inquiry about the world around him along
with the advancements in geometry laid the foundations for progress in statics by
Archimedes (circa 287-212 BCE) and later, dynamics in the early seventeenth century

with Galileo (1564-1642).

Aristotle’s works were very influential to Newton, as they include the first full-scale

discussion on the absolute vs. relative debate. Furthermore, prototypes of Newton’s

8 That is, two-dimensional motion + time

9 Adding the third dimension of spae

° Vergil, Aeneid 2.605; Ancient literature often features a motif depicting a God — Venus, in the Aeneid
— lifting the veil of mortal perception so that a hero receives divine insight or perspective.

“Rovelli, Carlo. “Aristotle's Physics: A Physicist's Look.” Journal of the American Philosophical
Association, v.2, 18 Aug. 2014, pp. 23—40. 2, https://doi.org/10.1017/apa.2014.11.



three fundamental laws of motion appear prominently in Aristotle’s major works. He is

critical of the vague language the atomists used to describe motion:

When therefore Leucippus and Democritus speak of the primary
bodies as always moving in the infinite void, they ought to say
with what motion they move and what is their natural motion.
Fach of the atoms may be forcibly moved by another, but each
one must have some natural motion also, from which the enforced
motion diverges. Moreover, the original movement cannot act by
force, but only naturally. We shall go on to infinity if there
is to be no first thing which imparts motion naturally, but
always a prior one which moves because itself set in motion by
force.'?
This is a qualitative, yet solid, description of inertial motion. But while Newton has just
one inertial motion, Aristotle has several natural motions, none of them corresponding
exactly with Newton’s. Nevertheless, Aristotle was heading in the right direction. Years
later, as Alexander the Great conducted his military campaign, the ideas of Aristotle and
the Greeks were spread throughout the Mediterranean. Codified through translation,

Aristotle’s works were accepted as truth and went largely unchallenged for centuries.

The extensive period of time between the two great intellectual periods suggests that a
solid argument was not enough to bring about significant changes in thinking.
Opposition to the paradigm was voiced by many thinkers in this time like John
Philoponus (490 CE-570 CE), whose conception of space, inertia, and force aligned
closely with Newton, but never with enough strength to dethrone mighty Aristotle. It
was not until the invention of the telescope that astronomers could provide proof that
Aristotle was fundamentally wrong. An empirical, quantitative study of the sky by
Copernicus and Kepler finally bypassed the philosophy of Aristotle and championed the
transition into evidence-backed science. The first notes of this waltz resounded after the
fall of Romanized Constantinople to the Ottoman Empire in 1453. Greek scholars fled
from the city to Italy, bringing the ancient works with them. It was the rediscovery of

these works in Medieval Europe that sparked the second great intellectual period.

2 De Caelo p. 273 (Book II1, ii, 300b)



We still see precursors to Newton from this time period, though, notably Jean Buridan
(1301-1358), born in Béthune, Paris, and his impetus theory. In Questions on the Eight
Books of the Physics of Aristotle, Buridan shows a clear awareness of inertial motion

and introduces his concept of impetus:

Thus we can and ought to say that in the stone or other
projectile there is impressed something which 1s the motive
force (virtus motiva) of that projectile. And this is evidently
better than falling Dback on the statement that the air
continues to move that projectile. For the air appears rather
to resist. Therefore, it seems to me that it ought to be said
that the motor and moving a moving body impresses (in Latin,
imprimit, or pressing into) in it a certain impetus or a certain
motive force (vis motiva) of the moving body, [which impetus
acts] in the direction toward which the mover was moving the
moving body, either up or down, or laterally, or circularly.
And by the amount the motor moves that moving body more
swiftly, by the same amount, it will impress in at a stronger
impetus. It is by that impetus that the stone is moved after
the projector ceases to move. But that impetus is continually
decreased (remittitur, be sent back by) by the resisting air and
by the gravity of the stone, which inclines it in a direction
contrary to that in which the impetus was naturally predisposed
to move it. Does the movement of the stone continually become
slower, and finally that impetus 1is so diminished or corrupted
that the gravity of the stone wins out over it and moves the

stone down to its natural place?'®

This passage anticipates not only Newton’s First and Second Laws of motion but also his
identification of momentum as a fundamental concept of dynamics, which he defined as
the product of a body’s mass and its velocity. In the last sentence, Buridan denotes the
strength of the impetus as proportional to the speed of the body that is thrown. These
descriptions are remarkably similar and it is not until Newton himself that fundamental
qualities of dynamics are formulated with such clarity and effectiveness. Thus, Buridan’s
chief contribution was overcoming the Aristotelian idea that no motion is possible
without a constant “pusher.” But even so, there was not yet a tie between the

development of new physical concepts and experimental measurement. Nevertheless,

3 Buridan, Jean, et al. Quaestiones Super Octo Libros Physicorum Aristotelis. Brill (2016.)



impetus theory gained widespread acceptance, and by 1600 had almost completely

replaced Aristotelian theory.

The discovery of dynamics in antiquity hinged on a dozen or so insights that were all
centered on mathematical descriptions of empirically observed motions. The Middle
Ages in Europe failed to produce a single such insight. Buridan’s argument lacked hard
evidence that could be expressed in a mathematically elegant way. The ideas were there;
the mathematics had been developed; but for some reason or another, they were not put
together. Thus, when the thinkers of the Renaissance connected these dots, it

revolutionized the world. Let us look now at their advancements.

Nicolaus Copernicus (1473-1543) was born in Torui in eastern Poland. At the age of 18,
he studied in Cracow, where he acquired several astronomical treatises. Most notably,
he read the Alphonsine Tables, which tallied calculations of the position of the planets at
any given time based on Ptolemaic theory, which said that the path of the planets could
be estimated by a series of circles. His uncle, a bishop of the Catholic church, sent
Copernicus to be educated at the University of Bologna where he studied Greek,
mathematics, law, and medicine. He returned to Poland in 1503 to work for his uncle
until the bishop died in 1512. It is unclear when he had the idea that redefined
cosmology, but sometime between 1510-1515, he began to carefully revise Ptolemy’s
work, thus embarking on a period of observations that lasted nearly the rest of his life.
In the preface to his De Revolutionibus, Copernicus himself noted that he had worked

on his idea “not merely until the ninth year, but by now,

the fourth period of nine years.”

What, exactly, did Copernicus propose? The basics are
straightforward: Copernicus suggested that the earth
simultaneously rotates about an axis and revolves around
the sun. But it was not so much these motions that made

Copernicus’s proposed theory revolutionary. At the heart

of his idea was a simple but nontrivial mathematical
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insight. Until now, the Greeks had represented the motion of the five planets known to
them geometrically with an epicycle, a small circle whose center follows the
circumference of a larger circle, as illustrated to the left, with the observer (Earth) at the
center of the larger circle. Copernicus’s first great insight was that, if a body was far
enough away, its motion through the sky as a result of the epicycle-deferent
configuration would be identical to the motion that would be observed if both the earth
and the body moved in circular orbits of different radii about a common center. But, the
ratio between the radii of the epicycle to the deferent circle must be the same as the

radius of the earth’s circular orbit compared to the body's.

Figure 1: Geometric proof of Copernicus’s work.

In the Ptolemaic configuration for an outer planet, the
observer is stationed at O, the center of the deferent
guide at D, and the planet at P. The sightline between
the planet and the observer is along OP. In the
Copernican  configuration, the earth’s orbit is
centered on O, the earth is at O’, and the planet is at
D. The sightline between the planet and the observer
is along O’D, which is parallel to OP. The observed

phenomena, thus, are the same.

Following this note, Copernicus’s second insight was that if the motion of the earth
around the sun was a component of the observed motion of the planets, the radii of the
other planet’s orbits could be deduced from the observed motion and expressed in terms
of the radius of earth’s circular orbit. Immediately from this, it followed that the orbits
of Mars, Jupiter, and Saturn must lie outside ours, and Mercury and Venus, for which it

was necessary to invert the epicycle and deferent, must have orbits inside the earth’s.

The impact of the Copernican revolution is immense; finally, the paradigm of

Aristotelian terrestrial motion was debunked. Interestingly, there was no major
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observational discovery that instigated his theory: it was based purely on existing,
predeveloped ideas, reinterpreting what was already known. In the history of physics,
we see only one other comparable event — Einstein’s creation of special relativity. Like
Copernicus, Einstein’s theories consisted of pure reinterpretation, but of Maxwell rather

than Ptolemy.

What persisted from the Greeks, though, is the fascination with order and beauty. Tycho
Brahe (1546-1601), an elite Danish astronomer, was greatly influenced by Copernicus,
but he could not accept the Copernican cosmology. Perhaps because of the authority of
his faith, perhaps because of his disbelief that earth could rotate without human
awareness, but most likely, Brahe invented his own Tychonic system because of the
sheer size of the universe that the Copernican theory implied. His own observations,
made with unprecedented accuracy, implied huge distances between the earth and the
stars. Brahe’s observational golden age was between the years 1576 and 1597 on the
island of Hven, just off the southwest coast of Sweden. King Frederick II of Denmark
sponsored the construction and outfitting of an observatory, Uraniborg, which allowed
Brahe to develop his passion for accuracy. Over the years, Brahe trained several
assistants and made substantial contributions to the field of astronomy. He went to
great lengths to measure the position of stars with minimal error, which he used to find
planetary and lunar positions. After the death of his royal patron in 1588, Brahe found a
new sponsor in 1599 in Rudolph II, the Holy Roman Emperor, who appointed him
Imperial Astronomer and invited him to Prague. Benatky Castle was put at his disposal,
but little significant work was completed in the last two years of his life. That is, except

for the training of his new assistant named Johannes Kepler.

Johannes Kepler (1571-1630) was born in southern Germany in the village of Weil der
Stadt. He was educated at the expense of the Duke of Wiirttemberg and in 1589, he
studied under the influence of Michael Mastlin, an excellent astronomer that introduced
Kepler to Copernican astronomy. In 1594, Kepler began to teach mathematics and
astronomy and started ruminating on cosmological questions. He sought to explain
three things — the number of planets in our solar system, the diameters of their orbits,

and the speed of their revolutions. In these questions, we can see the profound impact of
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the Copernican revolution, before which, these ideas could hardly be asked. In Kepler’s
writings, we can see the deep influence of De Revolutionibus and Copenicus’s exaltation
of the sun as the center of the universe. Even more so, Kepler was affected by
Copernicus and the Greek’s celebration of harmony. To this day, Kepler’s Third Law is
referred to as the harmonic law, acknowledging the beautiful relationship between the

positions and speeds of the planets.

Indeed, Kepler was utterly convinced that God had created a harmonious, ordered world
with the purpose of stimulating the senses of man. While modern minds might not
consider this attitude to be aligned with science, Kepler’s approach drove him to find
harmony in mathematical relationships. He believed that numbers and geometry were
the remnants of God’s handiwork that allowed humanity to explore His masterpiece.
This perspective aligned Kepler with the search of Plato and Pythagoras to find

archetypal, harmonious relationships between the planets.

In July of 1595, Kepler was teaching his students about how the conjunction of Jupiter

and Saturn is always separated by eight zodiac signs, passing gradually from one
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triangle to another. While drawing the figure above', he realized that the triangles
inscribed in the larger circle circumscribed a smaller circle and that the ratio of the radii
of these circles was approximately equal to the ratio of the radii of Jupiter and Saturn’s
orbits. He concluded that circumscribing and inscribing circles in geometrical figures
held the key to unlocking planetary geometry, rather than numerical relationships.
Drawing a square between Mars and Jupiter lent a reasonable fit to their actual orbits,
and so did a hexagon between Mars and the Earth. The problem was that he could find
no Godly reason for six planets, rather than 20 or 100. He decided that the five regular
Platonic solids®, rather than two-dimensional plane figures, must be inscribed and
circumscribed between the spheres of the planets. Thus, mathematics could prove the
harmony provided by six planets, as there were only five perfect solids that could fit
between their spheres. Years later, in 1619, he admitted that the astronomical
observations did not quite match his solution. He attributed the discrepancies to God
wishing to create musical harmonies in the eccentricities of the orbits. On Kepler’s
religious leanings that obscured him from the complete truth, I turn to Laplace's
comment: “It is depressing for the human mind to have to see how this great man dwells
with delight on his chimerical speculations and regards them as the soul and life of

162

astronomy.

Despite these discrepancies, after receiving Mastlin’s approval, Kepler published his
first work, Mysterium Cosmographicum (The Cosmic Secret), in 1596. The publication
of this text instigated Kepler to seek more accurate data and brought about his turbulent
collaboration with Brahe in 1600. Kepler initially traveled to Prague in search of precise
data on planetary distances that he hoped would confirm his speculations in Mysterium
Cosmographicum, but this data did not exist yet because Brahe did not yet understand

the motions of the planets. Thus, Kepler’s efforts pivoted to the study of the motion of

4 Reproduced from Johannes Kepler Gesammelte Werke, C.H. Beck'sche Verlagsbuchhandlung, Munich,
Vol. 1, p. 12

5 A regular Platonic solid is a convex, three-dimensional polyhedron with sides composed of identical
polygons whose vertices meet at the same three-dimensional angle. The five Platonic solids are the
tetrahedron (“pyramid”, four sides composed of equilateral triangles), hexahedron (“cube”, six sides
composed of squares), octahedron, dodecahedron, and icosahedron. Plato hypothesized in Timaeus that
the classical elements of fire, earth, air, aether, and water, respectively, were composed of these shapes.

6 Quoted from M. Caspar's introduction to his German translation of the Mysterium Cosmographicum,
Benno Filser Verlag, Augsburg (1923), p. xxx
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Mars, an endeavor that engaged him for the better part of five years and culminated

with his first two laws.

His greatest discovery was found in the early months of 1602. After aborting his mission
to calculate Mars’s motion using area and distance law calculations, Kepler turned to
triangulation to find the planet’s orbit directly. He first determined the position of three
points in helioastral space and found the circle that passed through them. Knowing the
center of that circle and the position of the sun, he could then define the orbit’s major
axis. He found that this was not congruent with his observations and repeated the
procedure for further triplets of triangulated positions; each time he found a different
proposed orbit. The evidence was damning: Kepler had discovered that the orbit of Mars
could not be a circle. This discovery, along with the many failures along the way, was

written in Kepler’s Astronomia Nova and published in 1609.

As Kepler investigated astronomical motions, a bit to the south, Galileo (1564-1642)
began to apply mathematical approaches to terrestrial movements. Early in his career,
Galileo drew upon the work of Aristotle, albeit critically. While watching a storm, Galileo
noticed that all of the hailstones landed at the same time, regardless of their size.
Assuming they started to fall at approximately the same time, at the onset of the storm,
this phenomenon violated the Aristotelian theory that heavier objects fall faster than
light ones. Thus in 1595, after Galileo had moved to Padua, he converted to Copernican
cosmology. With this shift, Galileo worked in his golden age of kinematics from 1602 to
1608, discovering both the law of freefall and the parabolic path of projectile motion. He
made great strides in improving the telescopes of the time and began to observe the
moon in 1609. He wrote up his work and his observations in a book titled Sidereus
Nuncius (The Message of the Stars), published in 1610, and became an acclaimed

scientist on the international stage.

This fame ensured widespread readership of his later books, especially those writing
about Kepler's work on Copernican astronomy. Galileo’s observations supported
Kepler’s argument that the celestial bodies must orbit other celestial bodies rather than

mathematical points. Furthermore, once he discovered the phases of Venus, which
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confirmed the planets were arranged as Copernicus argued, the Greek distinction
between the perfect heavens and imperfect Earth was ultimately destroyed. Galileo had
proved that the planets were not as divine as previously thought, beginning the
infamous conflict with the Catholic Church that dominated the next twenty years of his
life.

Original to the work of Galileo is his focus on describing motion mathematically, rather
than trying to explain it. Instead of attempting to give a framework of dynamics, he
dedicated himself to gathering precise and correct observations, thus reestablishing
mathematics as a key character in the quest to describe nature. He prioritized careful
analysis of observations over Aristotle’s logical approach, insisting that human intuition
could be deceived. This was the secret to his success. Galileo stopped searching for the
why and focused on the how. Rather than explain why stones fell to the ground with
accelerated motion, Galileo tried to explain the extent at which that acceleration

occurred.

Another important difference between Aristotle and Galileo was the latter’s concept of
perfectly mathematical motion. Galileo wrote about the path a body would follow if not
disturbed by air resistance and friction, inventing the “ideal physics world” we all
depend on. For Aristotle, the agent of a body’s motion was the medium — speed came
from the “pushing” or “resistance” of the medium. For Galileo, the effect of the medium

was only that of a bothersome distraction from perfect, mathematical motion.

Interestingly, though, Galileo describes the acceleration of a ball rolling down a slope in
Aristotelian terms. A body moving downward accelerates from a tendency towards its
“natural motion” and resists rolling upward because it is carried further from its

“natural place.”

A body subject to no external resistance on a plane sloping no
matter how little below the horizon will move down [the plane]
in natural motion, without the application of any external
force. This can be seen in the case of water. And the same body
on a plane sloping upward, no matter how 1little, above the
horizon, does not move up [the plane] except by force. And so
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the conclusion remains that on the horizontal plane itself the
motion of the body is neither natural nor forced.'’
His last comment is interesting. Galileo describes such motion as “neutral,” rather than
mixed, and acknowledges that they may be perpetual: “For if [a body’s] motion is not
contrary to nature, it seems that it should move perpetually; but if its motion is not
according to motion, it seems that it should finally come to rest'®.” While he never
explicitly uses the word ‘inertia’, Galileo clearly recognized the characteristic persistence

of motion attributed to terrestrial bodies that is encapsulated in Newton’s First Law.

Galileo soon realized that by reducing the slope of the plane he was able to reduce the
acceleration of a rolling ball. In 1604, he devised a way to measure speed and
acceleration. He let a ball roll down a shallow plane (of less than 2°) from rest and
marked its change in position (in millimeters) every half-second, as measured by
musical beats. He discovered a simple relationship: if the distance traveled in the first
interval of time is normalized to be 1, the distance traveled in the second interval is
equal to 3, then 5 in the third interval, etc. That is, if x(f) measures distance traveled in

time t:

x(1) —x(0) =1
x(2) —x(1) =3
x(3) —x(2) =5
=>x(n) —x(n—-1) =2n-1
At last, the application of mathematical precision to the fourth dimension! With simple

addition, we see that position increases as a square of the time:

x(0) =0
x(1) =1
x(2) =4

= x(n) = n’

Or, in a more recognizable form:

7 Galileo, De Motu p. 66
8 Ibid, p. 73
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This discovery convinced Galileo that indeed, mathematics was the language of nature.
He was able to use a formula to predict a body’s motion and separate the idealized state
from the observed motion. This technique was used by Newton to divide inertial motion
and disturbances from forces like gravity and magnetism. Galileo’s other major
discoveries — such as the parabolic nature of projectile motion, his theory of the tides,
and his thoughts on relativity that we refer to as Galilean invariance — were huge
advancements in the field of natural philosophy. Entire books could be devoted to each

of those momentous ideas.

The gist, though, is that these discoveries brought the study of nature to the threshold of
greatness and did so governed by mathematics and geometry. Kepler’s biggest struggle
was his ambition; he was observing motion that was too complex for him to grasp. The
complexity in the system of the heavens obscured him from seeing the fundamental laws
of dynamics. By focusing on the foundations — one-dimensional motion with constant
acceleration — Galileo was able to make far more significant strides than Kepler. The
other great advantage that Galileo possessed by studying terrestrial rather than celestial
motion is the ability to manipulate initial conditions. The systems in astronomy are
unique cases that are unchangeable by humans. Galileo’s advancements in the scientific
method were possible because he was able to control nearly every variable in his
experiments. It is much easier to discover how the angle of a slope affects a kinematic

system if it is the only variable to change.

It is not intuitive to believe that going back to the basics furthers our advanced
understanding of complex systems, but Galileo is our proof. The paradigm of the
immutability and perfection of the heavens was ended by Galileo. The final straws were
Descartes’ coordinate system and Christiaan Huygens’ invention of the pendulum clock,
which revolutionized measurement and precision. After Huygens discovered centrifugal
force, the first form of the law of conservation of energy, and the law of relative
velocities, the study of dynamics was poised for complete transformation. Barbour offers

insight into the advancements from this period of science in a wonderful metaphor:
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Huygens is the Dbird imprinted on his earthbound falconer,
Descartes. He had fashioned himself wings with which he might
have flown to unimagined heights but was restrained by a string
that temperament and circumstances never gave him cause to
break. His clarification of the centrifugal phenomenon and the
elucidation of the concept of force had an elegance that
surpassed Newton’s, and anticipated his by several years.

If Huygens was a falcon content to remain on the perch having
brought home the sleekest hares ever caught on the Lord’s
estate, Newton was the soaring eagle with an eye to catch the
moon and the very stars.

Indeed, Newton was able to break the Cartesian tether and set forth into uncharted land,

which our story will turn to now.

Isaac Newton was born on what was then' Christmas Day, 1642, in the hamlet of
Woolsthorpe in Lincolnshire. Newton’s mother initially wished for him to take over the
family’s estate, but his academic promise resulted in his being sent to school in
Grantham, where he was noted for the brilliance of the mechanical devices he
constructed. In the summer of 1661, Newton matriculated at Trinity College, Cambridge,
where, like many other universities in Europe, natural philosophy was still largely in the
grip of Aristotelianism. Before he graduated, he dreamed up a new system of
mathematics that studied how things changed, be it speed, position, velocity, volume,
etc. At the age of 22, he embarked on independent study in almost complete isolation
from other scientists. Towards the end of this period, in 1665, the university was closed
by an outbreak of the Bubonic Plague, and Newton was forced to return to his home. He
claimed in later years that in his home garden, he “began to think of gravity extending to
the orb of the moon.?*” The unpublished studies that Newton did in these early years,
including pioneering work in mathematics (working out the foundations of calculus),
optics (including his experiments on the spectral decomposition of light and the
invention of the reflecting telescope named after him), and dynamics were immense and

set the stage for greatness.

9 It’s a long story. Newton’s date of birth is contentious. In the 1640’s, England switched from the Julian
calendar to the Gregorian calendar, which we use today. Depending on which calendar you prefer, Newton
was either born on Christmas Day, 1642, the year Galileo died, or January 4th, 1643.

20 1. Newton, Catalog of Portsmouth Collection, Cambridge (1888), Sec. 1, Division xi, No. 41.
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Newton’s name entered the international stage primarily through his early work on
optics, though knowledge of his work in mathematics was spread through
correspondences and actually reached Leibniz. Later, this led to a bitter controversy as
to whom the priority in the discovery of calculus should be attributed. It was his
reflecting telescope that brought Newton recognition and election to the Royal Society,
the world’s oldest independent scientific academy. This encouraged him to submit a
paper on optics in 1672, which, although well-received, led to a sharp dispute between
him and Robert Hooke.

At the time, the Royal Society was “particularly busy investigating and understanding
nature and the laws of motion more thoroughly than has been done heretofore... since
nature will remain unknown so long as motion remains unknown, diligent examination
of it is the more incumbent upon philosophers...*”. Hooke had especially been
developing ideas on the dynamical treatment of the planetary problem. In particular, he
proposed that the planets were kept in orbit by a force directed towards the sun. In 1679,
Hooke wrote to Newton, asking for an opinion on his theory. This correspondence led
Newton to an insight that changed the history of physics forever — Kepler’s Laws could
demonstrate the planets must be attracted to the sun by a force whose strength

decreases the farther the body is from the sun. That is to say, only and inverse square

law F a% would reproduce Kepler’s Laws. This critical discovery prompted the

synthesis of dynamics.

For years, Hooke, Wren, and Halley had been considering the problem of the planets.
They were closing in on the right solution but lacked the mathematical fortitude to get to
the finish line. Specifically, Halley and Wren had the idea to partner Kepler’s Third Law
with Huygens’ formula for centrifugal force to show that the gravitational force between
objects varies as the inverse square of the distance between them. What they could not
derive was the specific path that such a force would drive objects to follow. In August of

1684, Halley traveled to Cambridge and put the problem to Newton: what curve would

2 Westfall (1971), opp. contents page.
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be described by a planet subject to a force of attraction from the sun that was inversely
proportional to the square of its distance? In response, Newton told Halley that he had
solved this problem years ago but could not, at the moment, find his proof. He
promised, though, to provide it when he found it. In November, Halley received his
answer, an ellipse with the sun at one focus, in a paper titled De Motu Corporum in
Gyrum (Concerning the Motion of Bodies in Orbit). Newton’s ingenious solution was to
invert the problem: assume the orbital path to be an ellipse and find the force required

to ensure this.

Upon reading Newton’s solution, Halley urged him to enter his work into the register of
the Royal Society, as evidenced by a report on the matter to the organization on
December 10th, 1684. During this time, Newton’s life had utterly transformed. As
Barbour so eloquently puts it, “[Newton] started work on one of the most astonishing
labors of intellectual man: a comprehensive treatise on motion, the aim of which was to
show how the entire gamut of observed motions — both terrestrial and celestial — could
be deduced from a mere handful of general principles formulated in a mathematically
rigorous framework.” His servant at the time noted how intensely this work seized his
master: Newton would often completely forget to eat as he was so engrossed in his

project.

In the autumn of 1685, Halley returned to Cambridge to see the work done thus far. In
the year since his first visit, Newton had transformed an early solution of the planetary
problem into a complete theory of universal gravitation. From this point, Halley devoted
the whole of his energy to both ensuring Newton’s work was published and preparing
the scientific community for the dawn of the impending masterpiece. Thus began the
series of events that eventually led to the publication of Philosophiae Naturalis
Principia Mathematica (The Mathematical Principles of Natural Philosophy) in the
spring of 1687, a date that defines the scientific age.
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The role of Halley in Newton’s success is not to be underestimated. Halley referred to
himself in later years as ‘the Odysseus who produced this Achilles,*” and he definitely
needed the skills and strength of the Ithacan king. Managing press for temperamental

Newton served difficult for his disagreement with Hooke:

There is one thing more that I ought to inform you of, viz,
that Mr. Hooke has some pretensions upon the invention of your
rule of the decrease of gravity, being reciprocally as the
squares of the distances from the center. He says you had the
notion from him, though he owns the demonstration of the curves
generated thereby to be wholly your own; how much of this is
so, you know best, as likewise what you have to do in this
matter, only Mr. Hooke seems to expect you should make some
mention of him, in the preface, which, it is possible, you may
see reason to prefix. I must beg your pardon that it is I, that
send you this account, but I thought it my duty to let vyou
know, that so you may act accordingly: being in myself fully
satisfied, that nothing but the greatest candor imaginable, is
to be expected from a person, who of all men has at the least
need to borrow reputation.?’

Given that Hooke had no idea of the magnitude of work Newton had accomplished, this
was not an unreasonable request. In their correspondences, Hooke had explicitly told
Newton that he believed “attraction” was always based on a “duplicate proportion to the
distance from the center,>*” but that he did not know what curve a body subject to a
central attraction would follow. Newton’s unpublished papers show us that the
suggestion of the inverse square law was the least of Hooke’s assistance: his real service
was giving Newton the idea to consider central attraction in the planetary problem.
Once Descartes supplied what later became the law of inertia, all that remained was
finding a force responsible for deflecting the path of the planets. Hooke proposed the
specifics: an attractive force towards a center. This distinction separates the work of
Hooke from that of Descartes, Huygens, and even early Newton. In the cases of the
latter, the deflecting force was a contact force, given by a string in the case of Descartes

and Huygens and a circular rim in the case of Newton.

22 Westfall (1980), p. 405

23 The Correspondence of Isaac Newton, Vol. 2, ed. H. W. Turnbull, Cambridge University Press (1960),
pg. 431

24 Ibid, p. 309
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After an initially controlled reply to Halley, Newton wrote an unrestrained letter to
Hooke. Apart from the glimpse into Newton’s troubled psyche, the main point of the
exchange is that it shows us how prominent the planetary motion problem was in the
late seventeenth century. Hooke, Halley, and Wren tried and failed. From Descartes, the
problem passed through the qualitative stage of Borelli and Hooke and now needed to
be solved quantitatively and empirically. The remarkable thing, though, was how
suddenly a theory of everything came. Halley asked for a solution to a specific problem
and received a theory of universal gravitation with all its consequences fully explored.
The relationship between the sun and the planets was established beyond doubt by
Newton’s work. He demonstrated, in excruciating detail, that every little speck of matter
exerts a force on every other bit of matter proportional to its mass and the square of the
distance between them. With Newton’s tiff tamed, the president of the Royal Society,

Samuel Pepys, granted the “imprimatur,” and printing was completed on July 5, 1687.

The Principia is, in a word, substantial, both in impact and in material: the English
translation by Andrew Motte is about 500 pages. It starts with an Ode by Halley and a
preface by Newton, after which, the Principia proper begins with a set of eight
definitions of fundamental concepts. It’s interesting to note that Newton writes his
science like a mathematician: he offers a theorem, specifies corollaries, and poses

problems, all in the formal text utilized since Euclid.

The first fundamental concept that Newton introduces is mass, or, as he puts it, “the
quantity of matter.” In the history of natural philosophy, little regard had been given to
this remarkably important concept since Aristotle. Newton distinguishes mass from
weight, and describes the proportionality he has found by “experiments on pendulums,
very accurately made.” Next, Newton defines what we call momentum — “the quality of

motion...arising conjointly from the velocity and quantity of matter” — and then inertia:

The vis 1insita, or innate force of matter, 1is a power of
resisting, by which every body, as much as in it lies,
continues in its present state, whether it be of rest, or of
moving uniformly forwards in a right line.
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He identifies that a body only exerts this force when another force acts upon it and
utilizes definitions IV-VII to expand upon these “impressed” forces. In definition IV,
Newton defines the general case, in which an impressed force is “an action exerted upon
a body in order to change its state.” Then, he specifies centripetal forces in definition V
to be those that “tend toward a center” and of which there are three types, absolute (VI),
accelerative (VII), and motive (VIII).

After these definitions, Newton offers his infamous Scholium comparing absolute versus
relative time, space, and motion. Up until Galileo, motion had largely been discussed in
relation to other motion. The concept of space was an abstraction humans used to
compare the different arrangements of a system of objects. Thus, the idea of empty
space was a conceptual impossibility, like dividing by zero. The same was true for time.
It was believed that there can be no lapse of time without evolution: time is merely a
measure of cycles of change in a system. In the Principia, Newton declared that space is
something real and distinct from objects, and that time is real and passes uniformly
without regard to whether anything moves in the world. That is, matter has no effect on
space or time.* This paradigm worked until Einstein, but that is a discussion for

another text.

Following this discussion, Newton lists his three fundamental laws of motion:

Law I: Every body continues in its state of rest, or of uniform
motion in a right line, unless it is compelled to change that
state by forces impressed upon it.

Law II: The change of motion is proportional to the motive force
impressed; and is made in the direction of the right line in
which the force is impressed.

Law III: To every action there 1is always an opposed equal
reaction: or, the mutual actions of two bodies upon each other
are always equal, and directed to contrary parts.

Later in the Principia, in the following scholium, Newton discusses the empirical
evidence he has collected to prove his Third Law of Motion, but offers no justification

for either of the first two. This instance of asserting a claim without offering explicit

25 From Einstein, of course, we now know that this is not true. Matter, specifically mass, curves spacetime.
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justification is not a unique occurrence in Principia. While Newton often gives the
rationale for his arguments, there are many cases where his reasoning is not explicit, or
even implied. Just like some textbook authors today, when he doesn’t feel like going into
it, Newton leaves the proof as an exercise to the reader. A key instance of this will be

discussed later, in Chapter Two.

The laws of motion are followed by six corollaries that introduce several core tenets of
dynamics. The first two corollaries discuss the composition and decomposition of forces:
The former equates the “addition” of two forces into one composite force using
parallelograms, and the latter discusses breaking a force into its components, like a
triangle. Corollary III states the law of conservation of momentum and Corollary IV
claims that the center of gravity of a closed system?® is either at rest or moves uniformly
in a straight line. The fifth corollary gets interesting, so I include the full text and

associated proof (italicized):

The motions of bodies included in a given space are the same
among themselves, whether that space is at rest, or moves
uniformly forwards in a right line without any circular motion.

For the differences of the motions tending towards the same
parts, and the sums of those that tend towards contrary parts,
are, at first (by supposition), in both cases the same; and it 1is
from those sums and differences that the collisions and impulses
do arise with which the bodies mutually impinge one upon another.
Wherefore (by Law II), the effects of those collisions will be
equal in both cases,; and therefore the mutual motions of the
bodies among themselves in the one case will remain equal to the
mutual motions of the bodies among themselves in the other. A
clear proof of which we have from the experiment of a ship; where
all motions happen after the same manner, whether the ship is at
rest, or is carried uniformly forwards in a right line.

It is peculiar that while Newton firmly insists on the reality of absolute space and
motion, this discussion of motion appears to be... relative. This corollary, which is
supposed to be a direct consequence of his laws of motion, rejects the claim that the

speed and direction of absolute motion can be determined from the phenomena, which

counters the implications of the Scholium. Finally, in Corollary VI, Newton claims that

26 In Newton’s own words, “acting upon each other (excluding outward actions and impediments)”
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bodies urged in parallel lines by equal accelerative forces will move in the same way as if

they had not been acted upon.

This is shockingly similar to Einstein’s Equivalence Principle and his elevator thought
experiment. Einstein argued that acceleration in flat spacetime is locally
indistinguishable from gravity. That is, if you can only make measurements in a small
area around you, you cannot distinguish between acceleration and gravity. Or, if you're
stuck in an elevator, you cannot tell whether an object, if you dropped it, was being
pulled down by Earth’s gravity or pulled up by the elevator accelerating upward. It is
fascinating how scientists centuries apart can observe the same phenomena and
interpret them so differently. In the final scholium of the section, Newton acknowledges
the ideas that inspired his magus opus and credits Galileo, Sir Christopher Wren, Dr.
Wallis, Mr. Huygens, the “greatest geometers of our time”, and Edme Mariotte for
“laying down such principles” and “confirming by an abundance of experiments”. Thus,

we move to the body of the Principia.

The main text of the Principia is broken up into three sections. The first book discusses
motion with no resistance, the second one motion with resistance, and the third is aptly
titled “Concerning the System of the World.” To cover all the details contained in
Principia, I'd have to write a book at least as long as it. Suffice to say, every page is
densely packed with an immense range of material. The Principia was and is a daunting
book — in the seventeenth century, on account of the novelty and intricacies of the
subject; in the modern day, on account of the now archaic mathematics and vernacular
used. Even when reading an English translation, Newton’s methods of derivation are so
foreign that there is almost a language barrier to understanding. The way that we

approach and complete proofs has fundamentally changed.

To analyze this further, we will turn to a derivation from Book II.
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Chapter Two:
Investigating Newton’s Proof
(Or Lack Thereot.)

In the Principia, Newton performs four experiments to empirically confirm his theories
about forces and their interactions. In Book II, which, as stated earlier, covers motion in
resisting media, Newton performs two elaborate experiments to measure fluid
resistance forces. His ultimate goal with these experiments was to provide conclusive
evidence that there is no medium resisting the motions of comets. But, as he was
understandably limited to terrestrial experimentation, the investigation of fluid

mechanics was of unique interest to him.

Sometime after De Motu in 1684, Newton concluded that resisting forces consisted of
two components: one owed to the “internal friction” that resulted from the viscosity of
the fluid and varied as the velocity of the moving body; and another that resulted from a
body’s inertia and varied as velocity squared. In the summer of 1685, Newton conducted
initial experiments investigating pendulum decay in air and water. He believed that by
varying the arc length of the pendulum, he could disaggregate the components of the
resistance force. Newton presented the results of this experiment in the first edition of
Principia in unprecedented detail, thus allowing readers to retrace his steps and confirm
his results. He had reason to do this, as he did not come to any precise conclusions. All
he was able to deduce was that the resistance force could not involve any power of

velocity greater than 2.

Shortly after the first edition of Principia was published, Newton discovered the source
of error in his pendulum-decay experiment: the oscillating motion of the pendulum

caused the medium to also oscillate, resulting in a difference between the velocity of the
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bob relative to the fluid and to the velocity of the bob relative to the central axis. This
was a fatal design flaw of his experiment that compelled Newton to scrap it entirely for

the second and subsequent editions.

In the redesign, Newton relied on vertical fall to precisely measure the effects of
resistance forces in a hope of determining the relationship between the density of a
resisting medium and the magnitude of resistance it provided. From the pendulum
fiasco, Newton had a good idea that the resistive force depended on the shape of the
sphere (specifically, its diameter, d, squared) and the density of the fluid medium, p. He
deduced from initial vertical-fall experiments that the exact solution would involve the

body’s velocity, v, squared and a coefficient of proportionality, ¢, thus creating a

resistive force with form cpdzvz. Taking c as given, Newton could thus predict the time a
body would take to fall from a given height, or the height fallen in a given time. After
dropping ten spheres in water and six in air from the top of the dome of St. Paul’s
Cathedral,”” Newton's plan was to compare the predicted time of descent and the
measured time, remarking “if it [the body] encounters another resistance in addition,
the descent will be slower, and the quantity of this resistance can be found from the

retardation.”

The problem is that this remark is nearly all that Newton offers as explanation. Book II,
Proposition XL, Problem IX provides the “derivation” — more accurately, the lack
thereof — that Newton uses to support his theory of resistive forces. It’s just over a page
long and horribly incomplete. Newton defines his variables and then offers his formula
for height, h(t). He pulls numbers apparently from thin air without including any

discussion of where they come from; a method very different from the standard today.

Investigating the differences in experimental design between the investigation into fluid
mechanics in the first, second, and third editions of Principia gives us a remarkable
glimpse into the development of classical mechanics. By looking at the changes between

editions, we can watch Newton’s process. Because of Newton’s tendency toward

27 Designed by William & Mary’s own Sir Christopher Wren!
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individual study and isolation, we don’t have many papers that show us how he thought.
We also don’t have much record of Newton’s failures, but the readaptation of the
vertical-fall experiment from the inconclusive pendulum-decay experiment shows us an
explicit example of a mistake. Studying the evolution of the Principia tells us as much
about physics, if not more, as the body of the text, itself. The purpose of this chapter is to
“update” this derivation and provide an explicit, more thorough explanation of parts of

it. I will be including the verbatim text (in English) in block quotes and my

commentary in normal text. We start by defining our variables:

PROPOSITION XL. PROBLEM IX

To find by experiment the resistance of a globe moving through a
perfectly fluid compressed medium.

Let A be the weight of the globe in a wvacuum, B its weight in
the resisting medium, D the diameter of the globe, F a space

which is to %D as the density of the globe is to the density of
the medium, that is, as A is to A — B.

“A space that is “t0” 4/3 D?” This is not a contemporary phrasing, but I think Newton is

trying to set up a set of ratios:

F__ P A
iD . pglobe = (1)

3 medium

Without reference to it, Newton is employing Archimedes’ principle: F , == P9V, where

F, is the buoyant force, p is the density of the fluid, g is acceleration due to gravity, and

mass

V is volume of fluid. If we solve plug p = into formula (1) and our definitions of A

volume

and B into Archimedes’ principle, we arrive at a consensus:

B=4A VeA-B=p,V (2

= Pruia
where p i " would be the mass of the displaced fluid, which agrees with the second
ratio in Eq. (1). Let’s continue:

...G the time in which the globe falling with the weight B
without resistance describes the space F, and H the velocity
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which the body acquires by that fall.Then H will be the greatest
velocity with which the globe can possibly descend with the
weight B in the resisting medium, by Cor. II, Prop. XXXVIII; and
the resistance which the globe meets with, when descending with
that velocity, will be equal to its weight B; and the resistance
it meets with in any other velocity will be to the weight B as
the square of the ratio of that wvelocity to the greatest
velocity, H.

That is to say, we are operating in conditions of freefall: x = vt = F = HG, where H is

v the terminal velocity of the body.

Let the globe be let fall so that it may descend in the fluid
by the weight B; and let P be the time of falling, and let that
time be expressed in seconds, if the time G be given in seconds.

Find the absolute number N agreeing to the logarithm

N+1
N

0.4342944819 2, and let L be the logarithm of the number

Note the subtle distinction between “logarithm” and “logarithm of.” The difference in
the Latin — logarithmo versus logarithmus numeri — helped us deduce the arguments

of each term and figure out that Newton means to say log(N) = 0. 4342944819%:

2P

log(N) = log, (e) *2—;: N =e® where the leading coefficient 0.4342944819 is

utilized to switch between log 10 and In(x), and L = log . o(% .
...and the velocity acquired in falling will be x;lH, and the
height described will be 2L _ 1.3862943611F + 4.605170186LF. If the

G
fluid be of a sufficient depth, we may neglect the term

4.605170186LF will be the altitude described; nearly.

This passage embodies why this chapter exists. Newton gives us these equations and

offers no evidence. First, let’s try to explicate his logic about the last term being

minimized. If the fluid is “sufficiently deep,” Z—GP >> 1, so,

N+1
L = log, ( )

= log, (1 + %)

= In(1 + ) * log (10)
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which, if we perform a Taylor expansion, we see that the leading term is proportional to

2
% =e ° << 1. Okay, great. Any term with L should vanish when P >> G. I have no

idea, though, where the coefficients 1.386... and 4.605... come from. Upon preliminary
research, I have found that 1.3862943611 = In(4) and 4.605170186 = 2I(n(10), but

those numbers hold little significance for me at this time.

This is an opportunity for further research. These numbers contain a lot of significant
figures — the precision that Newton displayed in his computations and claimed in his
experiments is astounding. In the chart of data and calculations that follows this
derivation, pictured above, Newton claims to measure time to the thousandth of a
second. This is a remarkable claim, given that oscillations of pendulums constituted the

cutting edge of timekeeping.

I'll be transparent — Newton’s precision is a bit too astounding to sit right with me. It

would be interesting to investigate whether we could replicate this level of precision
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using Newton’s methodology today. I am doubtful. Newton’s derivations,
measurements, and experiments are some of the many enigmas of the Principia. To
investigate some of the other mysteries buried in the text, I turn now to discuss the

annotations written in the margins of William and Mary’s copy of the Principia.
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Chapter Three:
The Mysteries of the Marginalia

William & Mary’s Special Collections owns a first edition copy of Principia, donated by
Rev. Thomas Staughton Savage in 1869. A recent census by Caltech reports that our
copy is one of 386 first editions known to survive to the modern day*:. Other copies
reside in libraries and private collections around the world; in 2016, a first edition sold
for over $3.7 million, making it the highest valued scientific book in the world*. William
& Mary’s (W&M) copy, though, is priceless due to the marginalia littering the text. My
work for the past three years has been cataloging these notes, deciphering their content,
and analyzing what they show us about the creation and development of classical

mechanics.

28 Clavin, Whitney. “Hundreds of Copies of Newton's Principia Found in New Census.” California
Institute of Technology, 10 Nov. 2020,
https://www.caltech.edu/about/news/hundreds-copies-newtons-emprincipiaem-found-new-census.

29 Geggel, Laura. “Isaac Newton's Book Auctioned for Record-Setting $3.7 Million.” LiveScience, Purch, 15
Dec. 2016, https://www.livescience.com/57229-isaac-newton-book-sold-breaks-record.html.



33

When I began, my predecessor, Jackson Olsen, left me a few of his notes and a solid
starting point. He had noticed that several of the sections in W&M'’s edition appeared to

be crossed out and replaced with passages from Newton’s Third Edition. Niccolo

Guicciardini, a historian of mathematics at the
University of Milan, also pointed out the
possibility of a reference to a proof from 1802 in
one of the annotations. I was interested in
searching for more dates to see if I could further
limit the timeline of our alleged annotator(s). I
started, as most people do, at the beginning: in my
case, on the title page of the Principia.
Immediately, I noted the absence of the letter c in
the Latin word auctore, “author”. In the second
and third editions that I have seen, this typo is
corrected, but it is still surprising to me that a

mistake of this size was not caught before printing.

While Samuel Pepys was responsible for
typesetting the title page rather than Newton, I note this blunder as a reminder (to both
reader and author) to distance yourself from equating genius with perfection. Albeit the
embodiment of brilliance, he is not to be blindly trusted: this was the first of many

lessons I learned from my time with the Principia.

Still shocked, I turned to the epithets attributed to Newton, ‘Trin. Coll. Cantab. Soc.
Mathefeos Profeffore Lucafiano, & Societatis Regalis Sodiali.” and had some difficulty
translating them. I reached out to a Linguistics professor, Jack Martin of William &
Mary, who taught me about seventeenth-century typesetting practices. The ‘f’ that I was
seeing was an ‘s’ used to conserve space to preserve the width of a line of text. I saw
three different types of S’s and named them the ‘normal,’” ‘integral,” and ‘¥’ S’s; they can
be seen in Soc., Lucasiano, and matheseos, respectively. I thus translated the epithets to

be ‘Trinity College, Lucasian Professor of Mathematics, & Friend to the Royal Society.3”’

3° T was unfamiliar with the Royal Society, founded by Sir Christopher Wren, William Petty, and Robery
Boyle, until working on this project. They describe themselves as a “learned society” dedicated to
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This gave me my first few leads on possible identities — perhaps our annotator was a

work colleague of Newton’s, or maybe an editor from the Royal Society.

I continued through the Principia, noticing an amalgamation of cross hatching,
underlining, bubbles, and dots. I also saw that someone was numbering the sentences
and changing the Latin ever so slightly. In Latin, nouns are assigned a certain
declension based on their part of speech. While English determines the meaning of a
sentence from its word order — that is, ‘the dog chases the cat’ means something very
different from ‘the cat chases the dog,” and ‘dog the chases cat the’ is completely
nonsensical — Latin utilizes the last 1-4 letters of a noun to assign parts of speech. Thus,
Canis fugat felem has the same meaning as Felem canis fugat: the dog chases the cat. If
I wanted to alter the meaning of the sentence into ‘the cat chases the dog,” I would need
to change it to Canem fugat feles. In the Principia, I saw several instances of an
annotator changing noun endings. The annotator would cross out the original sentence
and replace it with another of similar content but containing slight shifts in grammatical

structure. This suggested that my annotator was editing the first edition.

Thus, I started looking into editors associated with Newton and stumbled upon a man
by the name of Roger Cotes. After comparing his handwriting with excerpts from the
Principia and learning that all four copies of the text touched by Cotes are already
accounted for®, I abandoned the thought and turned elsewhere. I fell into a rabbit hole
comparing handwriting samples of nearly every name associated with Newton I could
find. I scoured every corner of the Internet, thankful for private collectors who had held
on to letters, journals, and diaries. After comparing samples from numerous

connections, I'd developed an efficient system. I noticed that my author had

characteristically open ‘p’s’ that looked

almost like ‘h’s” and his ‘d’s’ had a curved

stem that hooked over towards the left. Nevertheless, at the end of day one, I found

myself stuck in a web of red strings, browser tabs, and personal correspondences,

celebrating excellence in science. Members are on the order of Jocelyn Bell, Stephen Hawking, and
Charles Darwin.
3! From the University of Sydney Library, https://digital.library.sydney.edu.au/nodes/view/7166
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trapped like a frantic insect. I must have looked at hundreds of samples, none of which
matched the careful script of my annotator. After eating and sleeping, I recentered on
the only thing I knew to be certain: my text. I continued on from the first few pages,
moving past the Definitions and Axioms, and found something of interest in the second

Lemma of Book 1:

My own translation of Lemma II reads: “If in any figure AacE, embraced by the right [lines] Aa, AE, and the curve
[alcE, any amount of parallelograms can be inscribed; Ab, Be, CD, & c., having been constrained under equal bases
AB, BC, CD, &c. & with sides Bb, Cc, Dd, & c. parallel to side Aa of the figure; & the parallelograms aKbl, bLcm,
cMdn, &c. are completed. Then, if the width of these parallelograms might be reduced, and [their] number be
increased to infinity: I say that the ultimate ratios that the inscribed figure AKbLcMdD, the circumscribed figure

AalbmendoE, and the curved line AabedE have to each other are equal ratios.”

A knowledgeable reader might recognize the subject of this passage from Principia from
the diagram alone. In Book 1, Lemma II, Newton argues that a curve can be estimated
by a series of rectangles, an idea famously expanded upon by German mathematician
Bernhard Riemann 150 years later. Indeed, in Lemma’s I-IV, Newton is presenting a
geometrical approach to his new flavor of mathematics, infinitesimal calculus. In other
sections, when Newton presented an exciting, novel idea such as this, the margins were
littered with notes. I found it puzzling, then, that the Latin word dico, ‘I said,” was the
only comment written on this page. Even more peculiar, over the next three pages, dico

was written and underlined another five times.

We know what was being said... but who is ‘T’?
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The controversy surrounding Isaac Newton, Gottfried Wilhelm Leibniz, and the
discovery of calculus was a bitter, high-profile dispute among scholars. Newton and his
fervent supporters slandered Leibniz for the last years of his life. In his own

correspondences, Newton’s perspective alleging intellectual theft is clear:

“Second inventors have no right. Whether Mr. Leibniz found the
Method by himself or not 1is not the Question.. We take the proper
question to be,. who was the first inventor of the method.
Probity and principle demand a correct answer: To take away the
Right of the first inventor, and divide it between him and that
other [the second inventor], would be an Act of Injustice.¥”

In the face of such criticism, perhaps a miffed Leibniz procured a copy of Newton’s text

in order to investigate the claims of his opponent. Dico, I wondered if Leibniz wrote,

Dico primus: 1 said first.

I checked online to find a handwriting sample to compare our dico’s with. Thankfully,
Stephen Wolfram, creator of Mathematica and Wolfram|Alpha, had posted pictures of a
passage from Leibniz’s notes for us. Given the blessing of multiple samples and the
expectation that an author’s hand will show discrepancies across space and time, I

picked two of my favorites to serve as a reference point:

On the left, Leibniz crosses his A’s
and t’s from left to right, evidenced by
line thickness and flow of letters, so
he is most likely right-handed.
Besides that, his scrawl is messy and
his hand is heavy. His words, like the

dico’s from the Principia pictured

above, are composed of printed,

32Sir Isaac Newton, The Correspondence of Isaac Newton, 7 v., edited by H. W. Turnbull, J. F. Scott, A.
Rupert Hall, and Laura Tilling, Cambridge University Press, 1959—1977.
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mostly non-connected letters. Looking letter by letter, the d’s in both have hooked stems

and both o’s are completely closed.

At the time, I believed that the annotations in the Principia were authored by two
individuals. The first, nicknamed “the Doodler,” was responsible for the underlining and
cross-hatching while a second, more engaged reader wrote the more complex
annotations. But what if there was a third? We can see that the majority of the

annotations are written in a tidy, flowing cursive, illustrated here:

I am not convinced that the same person wrote this cursive and those dico’s. Like I said
before, my annotator has neat, legible handwriting, a strong baseline and rightward
slope, and characteristically open p’s. While the stems of these lowercase d’s are also
hooked like Leibniz’s and the dico’s, Leibniz did not write this cursive. And regardless,
as my colleague Jack Martin pointed out, all of the dico’s in the margins correspond
with a dico in the same line of text in the Principia. We see evidence of this behavior in a
few other places, for example, in Newton’s first law with suo and illum. Note the
distinctive separation between letters in the margin notes and the ‘integral’ S’s from

before in the text:

It seems, then, that our dico’s could be attributed to a bored reader, mindlessly writing

the words that he had just seen.

Back to the drawing board.
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As invigorating as the Leibniz narrative is, the evidence is purely circumstantial. With its
heavy pressure and narrow lettering, I admit that the handwriting looks similar. If we
assume, that the dico, suo and illum are written by a different person than whoever
penned the cursive, the timeline adds up?:. I have no proof, though, that W&M’s copy of
the Principia was ever in Leibniz’s hands. Thus, further investigation into the history
and previous whereabouts of our copy is the only way to identify our annotator(s) with
certainty. Even if I found a flawless handwriting match, I would need to prove that an
individual had access to the text to definitively tie them to our book. Let’s turn, then, to
the one person we know to have had possession of our Principia, Thomas Staughton

Savage.

Thomas S. Savage was born in Crowell, Connecticut on June 7, 1804 to a wealthy family.
He graduated from Yale in 1825 and received his M.D. from Yale Medical School in
1833. He practiced medicine until 1836, when he was called to practice religion. He
graduated from the Virginia Theological Seminary in 1836, after which he was ordained
a deacon and priest. In the winter of 1836, Savage traveled to Liberia, becoming the first
medical missionary sent by the Episcopal Church. Near the end of his trip in 1847, he
discovered a new species of ape while studying chimpanzee bones. He called it

Troglodytes gorilla, the western gorilla, which catapulted his career in science. Some of

his field notes are preserved by the
Royal Society34, left, which is a fair
match for our cursive annotator.
The rightward slant and tidiness are
consistent, along with the open and
‘h>-like p’s and hooked d’s. The

lowercase ¢’s don’t look the same,

but the capital P’s are a perfect match. All things considered, I'm willing to overlook a

few inconsistencies because of the difference in context between taking notes and a lab

33 That is, Leibniz lived from July 1646 to November 1716. This includes the release dates of the first and
second editions of the Principia but predates the Robertson proof of 1802 referenced in an annotation
written in cursive.

34 An account of the desquamation and change of color in a Negro of Upper Guinea, West Africa, by
Thomas Staughton Savage, 1846. From The Royal Society, AP/28/21
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notebook. It’s important to note that handwriting changes over time and place. Savage’s

handwriting in his letters varies drastically, specifically with regards to tidiness.

Returning to the United States at the end of his mission, Savage served as a rector in
Livingston, Alabama at St. James Church from 1848-1849 before transferring to Trinity
Church in Pass Christian, Mississippi from 1849-1857. United States census data places
Savage in Pass Christian in 1860 and Rhinebeck, New York in 1870. He stayed in
Rhinebeck until his death in 1880. Recalling that he donated the Principia to W&M’s
Library in Williamsburg, Virginia in 1869, the whereabouts and affairs of Savage
between Mississippi and New York are of interest to me. Of course, there’s no guarantee
that the annotations were done in this decade, so I wanted all of the content I could get

my hands on.

I started my search on the Internet and used Ancestry.com to connect with Savage’s
living descendants. I met John Cornell, Savage’s great-great-grandson, and Dave
Rutherford, his great-great-grandnephew. I was thrilled to share details about my
project with them. Luckily for me, both gentlemen are passionate about their family’s
genealogy and history and have thus kept records dating back to Savage’s lifetime. From
John, I learned that Savage had two sons that graduated from the University of Virginia.
This was both pleasing and confusing to hear — I now knew that he spent time in
Virginia outside of Seminary, but why wouldn’t he have donated the Principia to UVA?
What was Savage doing in Williamsburg, and why William & Mary? Later, Dave shared
with me over email that Savage’s son William was a minister in North Carolina and
donated his papers to the University of North Carolina at Chapel Hill. I checked out
UNCs library to see if they still had the papers.

They did, and they had a lot of them.

I reached out to my friends in W&M'’s Special Collections to express interest in taking a
peek at this collection. I offered to drive down, but graciously, UNC digitized their
documents for us. They quoted us a four-six week timeline, which I was thrilled with.

But what was I even looking for? Ideally, I would find a letter that contained an explicit
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reference to the Principia, its annotations, and a detailed history of where the text was
before Savage had possession of it. I knew, of course, that this was an unrealistic goal,

but even in the worst-case scenario, I would be able to compare handwriting samples.

While I was waiting for the text to be digitized, I pivoted from attempting to identify our
annotators to looking at the content of the marginalia itself. Jackson had already had
the idea that the annotations were revisions from the third edition of the Principia back
into the first, so that’s where I started. I began to methodically catalog the annotations

and concluded with three “categories” of content.

1. Corrections: Unoriginal content. Updating our copy with the revisions from the
3rd edition. I also found examples of content paraphrasing the Jesuit edition, a
later expansion on Newton’s work that offers more details regarding his proofs.

2. Notes: Original content of the annotator’s made while digesting the Principia,
explaining or commenting on what he is reading. This category also includes the
connections made between the text and external references.

3. Doodles: Includes scribbles, cross-hatching, underlines, simple mathematics,

absentminded drawings, etc.

The corrections were easy to spot. I had a copy of the third edition in Latin and was able
to directly compare the differences between them. For example, in Definition V.,
pictured below, corpus has been edited into corpora and tendit to tendunt, reflecting
the slight changes in sentence structure from the first edition to the third. I found that
the majority, but not all, of the changes between the first and third editions were
recorded in W&M'’s copy. Most of the time, they were copied verbatim. Sometimes they
were paraphrased, but a few clauses would be missing. Rarely, a passage would be
missing that was so long that the annotator did not even attempt to copy it all down. In
the first section of Book 1, an extended passage was added to the fifth definition. Instead
of writing it word-for-word, the annotator noted the first and last word of the additions,

seen in the bottom right corner, Lapis...flectatur.
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Around Def. V., we also see underlining and several instances of q’s and o’s being
bubbled in. These, along with the *, +,—, and A’s written in the right margin, fall into

category 3, evidence of The Doodler.

Category 2 is where things get interesting. Dotted throughout the Principia are lines of

handwritten text ending with a numerical reference, always in parentheses. There are

dozens of annotations just like this, some alluding to what text they are citing from, like
A.J.(130) or Euc. Elem?’ (112), but some with only a number. Their content seems to be

paraphrasing an external source and connecting it with the text of Principia. For

example, this annotation reads “This was demonstrated by Cor. 1. Lem. 11 used with a
similar arc having disappeared by the middle boundary. But because there are no
conditions as an arc, it is certainly so much concerning disappearing arcs (194).” Most of

the references start with something along the lines of hoc demonstratur per, “this is

35 Almost certainly referring to Euclid’s Elements.
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demonstrated by ”. This content is important because we can date our author based
on when the referenced text was written. While the original note to Euclid’s Elements

isnt much help as it came out in 300 BCE, this

reference to Simson, Euclid, and Data point to

Scottish mathematician Robert Simson. Simson published the second edition of his

critique of Elements, in which he tacked on a couple of books from Euclid’s Data in

1762. Furthermore, (Robertson’s Con. Sec. 197) is almost

certainly in reference to Abram Robertson’s A Geometrical
Treatise of Conic Sections, written in 1802. On page 197 of this text, we find a

demonstration of Proposition 10 from Book 1, where the conclusion is (as it should be):

“the centripetal force is reciprocally as C—lB, or directly as the distance CB.” 1802 is two

years before Thomas Staughton Savage was

born, so our timeline is still intact. The most

contemporary reference is to Laplace, 1818, written in pencil here.

Besides referencing other sources, the reader shows his engagement with the text

through little notes. Here, our annotator writes
“Descarte in his Geometria first solves generally
through analytic calculation.” This is in reference
to a passage in the first edition that Newton cuts
out of the following ones: “and so we have in this

Corollary a solution of that famous Problem of the

ancients concerning four lines, begun by Euclid,
and carried on by Appollonius; and this not an analytical calculus but a geometrical
composition, such as the ancients required.” This edit shows us that our annotator is
well educated in mathematics and is familiar with the classic texts of the time. You

might also note the presence of a second pen on the ‘0’ of Geometria. Plus signs are a

favorite scribble of The Doodler, but it seems our annotator held little
regard for avoiding them. Further study might reveal which pen wrote first

or if there even was a different pen. John Loud did not patent the first

ballpoint pen until 1888, decades after the Principia was safely housed in
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W&M’s Library. Thus, both our annotator and The Doodler were likely writing with
refillable ink — this might explain the differences in opacity between some of the

annotations.

The most identifying characteristic of our annotator, though, is not his pen, nor his

handwriting, nor his notes. It’s his secret code.

Disguised among the Latin, our annotator concealed his most secret thoughts in
complex symbols. At first, they might appear to be stray lines, a comma, or maybe even
a Greek letter. They are discrete, designed for you to skip over them. In fact, they've

already appeared in three different images in this chapter — did you catch them3°?

If not, don’t worry. I dismissed them as planetary symbols for months while I worked on

identifying my annotator. But once I saw them, I saw them everywhere.

Take, for example, the code in this passage. If there weren’t eleven symbols nearly in a
row, I might not have noticed they were even there. They are inconspicuous and

unassuming, the perfect recipe for clandestine affairs.

I started my hunt. Once again, I returned to the text, poring over the annotations in
search of clues. I found hundreds of samples and began to catalog them based on size,

orientation, and surrounding text.

% See pages 40 and 41.
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There were even instances where entire annotations were written in code. With time and

analysis, I started to see

patterns. I noticed some

repeating  elements like

circles, horizontal lines, vertical lines, hooks, and ‘C’ shapes. To rule out any existing
languages, 1 utilized Detexify?’, a free online symbol recognition tool. If you draw a
symbol, Detexify will identify it using shape matching and spit out the command to type
it into LaTeX. I got no results. I tried the same thing for Unicode using ShapeCatcher?®
& didn’t get anything there, either, despite the database of nearly twelve thousand
unique glyphs. I thus felt confident that I was working with a new alphabet, a shorthand
of sorts, rather than an existing one. Stuck, my advisor and I reached back out to Jack
Martin to pick his brain about paths forward and see if he was familiar with any of our

symbols.

While he didn’t recognize our symbols, Jack thought we were on the right track with the

shorthand idea. He believed that each arc, circle, line, and dash was either a letter or a

37 Created by Philipp Kiihl and Daniel Kirsch; can be found at https://detexify.kirelabs.org/classify.html
38 Created by Benjamin Milde; can be found at http://shapecatcher.com/
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letter sound, also known as a phoneme. We knew that a portion of the annotations were
perfect reflections of the third edition back into the first. Jack recommended that I
identify that category of entries and chart each symbol along with the corresponding
Latin in the Principia. He also pointed us to some sources on seventeenth and
eighteenth-century British shorthand. With this in mind, I compiled a table of nearly a

hundred instances of code.

The game plan was to create a neural network, feed it our shorthand-Latin pairings and
an analysis of the average frequency of each letter in the entire Latin written language,
and have the code pop out our solved alphabet. Easier said than done, but presumably
doable. W&M students can request access to the supercomputer and I figured that

someone in the Computer Science department could teach me how to code Al

Luckily for me, I accidentally cracked the secret code by hand and was able to avoid that

can of worms entirely.

I have found myself on more than one occasion knee-deep in binders of Principia, sticky
notes, Latin textbooks, and tables of secret code, sitting cross-armed on my couch,
glaring at the pages of a book that will not reveal its secrets to me. “I am more stubborn

than you,” I tell it, “and we’re going to have to work together whether you like it or not.”

She finally yielded at the end of September 2021.

In my table of symbols, I found two entries corresponding with different forms of the
same Latin word, sum, “to be”. In English, our “to be” — is, am, are, was — is used the

most common verb and the second, behind the, most

frequently used word in the language®. Sunt (left), “they

are” and sit ( right), “he would be,” look very similar. Our

secret code is an abjad alphabet: a writing system in which
only the consonants are notated, while the vowels are left for the reader to infer. Thus,

the only difference between s/u/nt and s/ijt is the letter “n”. The only difference in the

39 The Oxford English Corpus
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symbols is the horizontal line in s/u/nt. If “n” was represented by “—”, that would leave

“s” to be “0” and “t” to be “|”.

numeris invicem manentibus

€ <« »

Using “s”, “n”, and “t”, I plugged these letters into other symbols and deduced that “m”

is , ‘v’ is “/7, “b” is “(”, etc. From there, I found more words with these letters and

was able to fill out the complete alphabet, which is as follows:

" above h |r o | -above v |v
b |( i |, below p |oO w | “ below
c |\,o(ssound) [j |q(gsound) q | ‘above X \o
d |) k [\ r |/ y | q(sound)
e |’inline 1 |/ s |o z |o
f |v m | t ||
g |q n |— u | -inline

Some brief oddities to note: the vowels are only included if they are the first or last letter
of a word and the Latin vowel has a macron*’. A few of the letters — namely c/s, ¢/Kk,
y/j, s/z — are conflated based on sound. That is, the first “c” in circle would be spelled
with a “O” in shorthand and the “ph” in philosophy would be spelled with a “-”
Additionally, the “ch” sound is denoted with a 7. The same symbol is used for “r” / “1”
and “f" / V" —

like circum, magna, inter, hyper, and super are abbreviated by the corresponding

this can make translation difficult sometimes. Common Latin prefixes

[13 »

shorthand for the prefix’s first letter. The letter “w” is not present in Latin; “w” was

written in shorthand only once in the marginalia.

4° Namely the ablative case.
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Finally, I found a handful of times where the symbols for “s” and “t”

were swapped incorrectly. For example, this glyph should read

ordinationis, but actually spells ord/[i/n/a]s[io[n[i]s.

With the code cracked, I could finally turn back to identifying my annotator. In Book 2, I
discovered a slip of paper tucked into the text, pictured below. The front, pictured first,
is covered with polynomials and general mathematical notes, likely related to some
proof in the Principia while the back, pictured second, contains some English (!) writing
and some secret code, undoubtably written by our annotator as the handwriting is

identical.

The first line of text on the back of the insert references LeS[eur] and J[acquier],
authors of the Jesuit Edition. In the Monitum of the first book (1739), the two authors

acknowledge David*# Gregory, Varignon, Jakob Hermann, and John* Krill and in the

4 The names David and John are written in code.



48

monitum of the second book (1740), they refer to Euler’s Mechanica.** These names and

dates are stated on the paper, making our secret code a bilingual alphabet.

I haven’t been able to glean much meaning from the scribbled math on the front, but the

printed content of the letter, which reads as follows, is of interest to me:

SIR,

Understanding that the Friends of a Gentleman who is not yet
qualified to practice Physic 1in London, as he has not been
examined by the only competent and legal Authority, mean to
insist on his being admitted to-morrow a Candidate for the Office
of Physician to your Infirmary, I think it is my duty to inform
you, that he 1is not eligible under the Regulations passed and
confirmed by your Board; as he is not in any sense a Member of
the College of Physicians, being neither a Fellow, Lice[ntiate]*—

The Royal College of Physicians (RCP) is a British organization, headquartered in
London, dedicated to improving the practice of medicine. It is the oldest medical college
in England, founded by royal charter in 1518. The main role of the RCP in the
seventeenth and eighteenth centuries was accrediting physicians via an oral
examination. In order to be admitted, applicants must prove they were “classically
educated”, i.e. graduated from the Universities of Cambridge or Oxford, and
“groundedly learned” in a myriad of subjects.** In 1767, members of the RCP began to
raise complaints concerning the fellowship’s refusal to admit candidates from
non-Oxbridge institutions. The internal dispute lasted until 1835, when physicians

educated from all universities finally became eligible for fellowship.

Thomas Savage worked in medicine for years and writes in 1833 to his friend Dr.

Charles Osgood about his practice:

...Dr Holmes has gone to Hartford — 8th place would have been
left vacant had I not succeeded him — he was [unintelligible]

that I should come — and in company with another gentlemen of the

42 Guicciardini Niccolo. Reading the Principia the Debate on Newton's Mathematical Methods for
Natural Philosophy from 1687 to 1736, Cambridge Univ. Press, Cambridge, 2003, p. 248.

43 That is, a doctor who is licensed to practice and pays a fee to the RCP.

4 “History of the Royal College of Physicians.” RCP London, Royal College of Physicians, 24 Feb. 2022,
http://www.rcplondon.ac.uk/about-us/who-we-are/history-royal-college-physicians.
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place, waited upon me at Middletown for that purpose — my
intention is to go to the [unintelligible] southwest section of
U.S. — my wish 1is to get 1in with some old practitioner who 1is
about retiring and wishes to act only as a consulting physician.

Dr Miner has written to that effect to his friends 1in that

direction...?®

and in 1834:

...and 1if you refer to my much esteemed friend James Johnson
(1777-1845), M.D. of London, you will find that he agrees with me

on this head...I will give you 4in shorthand what I have done

within the last six months... *°

The front of the rejection letter in Book 2 of the Principia definitively links our
annotator with the Royal College of Physicians. Savage's letter to Osgood in 1833, along
with dozens of other sources, show that Thomas maintained a respectable career in
medicine and was motivated to leave Middletown, CT to work for an older doctor. In
Savage’s later correspondence in 1834, he explicitly references writing to Osgood in
shorthand and mentions his colleague James Johnson. Johnson, a doctor 27 years older
than Savage, was admitted a Licentiate of the RCP in 1821 and practiced in London until
his death in 1845.47

Savage is clearly a well-educated physician with demonstrated interest in fields ranging
from zoology to chemistry. We know that the oral examination required for admittance
into the RCP covered various scientific fields and that the annotator of the Principia was
clearly an engaged student. All of this evidence points to Thomas Savage. I believe that
Savage was studying for the test to be admitted to the RCP, but as a graduate from Yale
Medical School, he was not eligible for fellowship. He might have been writing in

shorthand to conceal his notes, as entrance into the RCP was incredibly competitive.

45 Dr. Charles Osgood papers, RHC-185. Grand Valley State University Special Collections and University
Archives.

6 ibid

47 Munk, William. “James Johnson.” James Johnson | RCP Museum, Royal College of Physicians,
https://history.rcplondon.ac.uk/inspiring-physicians/james-johnson.
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But, of course, all of this evidence is circumstantial. There’s a lot of it, and it paints a
convincing picture, but I cannot definitively prove anything. The explicit link that I
would love to find — a document written by Thomas Staughton Savage that references
the Principia and the notes he made within it — almost certainly does not exist. If it did,
I would have found it. I have investigated every letter penned by Thomas Staughton
Savage’s hand that exists in modern record. I have read his vacation letters, his accounts
on neighborhood gossip, his treatment plans for the Cholera epidemic, and a ranking of
his favorite cities in the southern United States®. If it was penned by his hand, you will
find it in my files. I have combed the branches of his family tree and shaken every apple
loose. I have investigated the Dioceses he worked for, his property records, the schools
he founded, and the ministries he led. I have scoured both sides of the Atlantic, nine
states, and D.C., accumulating newspaper clippings, correspondences, and hundreds of
writing samples. I am confident in saying that the circumstantial evidence on which I
base my theory is complete, well researched, and so far, the only theory which fits the
facts of the Principia. In the future, should new evidence come to light, as all science

does, I will reevaluate and possibly adjust my hypothesis.

And yet, even after all of this, the Principia contains more secrets — there are still
further areas of study that might turn up new clues. I have not yet identified The
Doodler, nor researched all of the references mentioned in the annotations. I am not
done cataloging the annotations, and I haven’t investigated all of the markings. For
example, at the end of a few dozen definitions, one of my annotators writes a single
letter. I have seen references to the attributed letters in some annotations, but they don’t
make sense to me. Finally, if there is a way to do so non-destructively, I would love to
explore the ink in the annotations. The differences in opacity and shade might be from
different pens, which might give us more information about how many annotators we
are working with. Of course, one annotator might use several pens, but I think the line of

investigation could be worthwhile.

48 Just in case you were wondering, Mobile, AL is his favorite and New Orleans, LA is his least favorite.
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In this thesis, I placed the Principia in its proper historical context so that we could
analyze its contents separated from the reverence associated with its author. I expanded
upon Newton’s proof discussing his experiment on resistive motion. I was able to offer
more detail and make Newton’s lines of logic more explicit. I cataloged the vast majority
of the annotations in William & Mary’s first edition copy of the text and sorted them by
content: corrections, notes, and doodles. I discovered and cracked the shorthand in the
margins and attributed Thomas Staughton Savage as their author. I investigated the
donor of William & Mary’s copy by contacting his descendants, collecting his records,
finding new letters, corresponding with museums and libraries around the world, and
pilfered through the archival documents of churches he founded. I narrowed down the
possible time range of annotation to a 51 year period and compiled new information

about the history of the document.

At the highest level, this thesis discovered new information about the discovery and
evolution of classical mechanics. I found new knowledge by looking backwards in time
rather than forwards. I am unspeakably grateful to have participated in this project and
I hope that this work will be foundational for future scholars to explore the inspiring

intersection of Physics and Classical Studies.
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