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Abstract 
 

The objective of this research project was to create an affordable and unobtrusive 
guidance system for the visually impaired. The project was split into three distinct functions 
necessary for safe self-navigation: 1) path detection, 2) object detection, and 3) elevation change 
detection. Path detection required the use of a camera and image processing tools found in the 
MATLAB software.  Information gathered from lines plotted over detected edges were used to 
provided auditory signals that warn the user when they drift toward the side of the path. 
Programs used for object detection focused on two main features: an object’s color and its 
horizontal shift within two stereoscopic images. Based solely on color, the program was able to 
locate multiple objects within an image, and output information such as location and size to the 
user. A separate program designed to analyze stereoscopic images was able to detect a single 
object within a path and convey how far the object was from the cameras. For elevation 
detection, a Time-of-Flight sensor was used with an Arduino to detect changes in height found in 
stairs or curbs.  This sensor gathered frequent measurements so any major deviation in distance 
was attributed to an elevation change.  
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1 Introduction 
 
1.1 The Goal for the Experiment 
 

According to the National Federation of the Blind, the United States is the home of 10 
million blind or visually impaired individuals. Statistics show that another 75,000 Americans 
are added to this list every year [1]. This means there is a growing need for assistive 
technologies to help these people get around and perform daily tasks. Traditionally, “white 
canes” have served as the primary tool for navigation. Those who are visually impaired tap and 
swing the cane in front of them to detect obstacles in their path. White canes are popular for a 
variety of reasons. They are affordable, ranging anywhere from free to $40 and they provide 
tactile information from the environment [2]. They are also customizable. Different tips can be 
attached to the end of the cane for more specific functions. For example, the “pencil tip” 
provides good tactile feedback but can get stuck in cracks inhibiting forward motion [3]. The 
“roller tip” and “marshmallow tip” can easily roll and bounce over cracks respectively, but are 
heavier which causes arm fatigue more quickly [3]. Despite the advantages of a white cane, 
there are some disadvantages also. In crowded places, canes can be cumbersome and 
awkward. Also, cane users face increased interference from good-hearted Samaritans wanting 
to help even when they are not needed [2]. Others choose to get a guide-dog as a faster, more 
elegant way of getting around. This method has its own set of problems such as being 
expensive and requiring a great deal of time and responsibility to train and care for the dog [2]. 
Higher tech options include the ARIANNA mobile app which is used indoors. Colored tape is 
laid down beforehand to mark out certain routes. Users then point their cell phone towards 
the ground and swing their phone to try and detect the lines. The phone will vibrate every time 
it detects a straight line, gently guiding users to their destination [4]. 
 

We want to provide a subtler, cheaper method of travel for people with visually 
impairments without the need of preexisting markers. The end goal of this project is to 
successfully create a wearable piece of technology that will gently and safely guide visually 
impaired persons using auditory or tactile outputs.  Chapter 2 describes the hardware and 
software used in each section of the project.  In order to do accomplish this goal,  the project was 
broken up into three parts. Chapter 3 explores path detection and auditory guidance based on the 
user’s relative position on the path.  Chapter 4 focuses on detecting obstacles in that path and 
determining the distance from the user.  Chapter 5 develops a procedure for detecting changes in 
elevation in the path such as stairs or curbs.   

2 Technology and Equipment 
 
2.1 The Hardware and Software 
 
 Since the goal is to create an affordable and easy guided walking system, the price of the 
equipment used will also be included in the description.  The system contains two ELP 720p 
Super Mini USB cameras which cost about $40 each. A set of stereo headphones, which may 
vary in price, is also needed to properly hear the auditory output. The system also requires an 
Arduino Uno and a VL53L0X IR sensor, which are about $20 and $15 respectively. 
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 The software used for the image processing methods was MATLAB R2015b.  This 
software was chosen because it contains numerous built-in image analysis functions that were 
used throughout the project.  However, the downside is that it is a large program that needs to be 
run on a laptop.  It is conceivable that only the functions that are needed can be coded to fit on a 
smaller, inexpensive computer model such as a Raspberry Pi.  This would be ideal so the user 
would not have to carry around a large computer and the system could be smaller, lighter, and 
more self-contained. The IR sensor requires the use of Arduino IDE on a computer to program 
and use the UNO and sensor. This software is available for free online. 
 

3 Detecting Pathways by Kyle Brubaker 
 
3.1 Introduction 
  

The goal for this section of the project is to identify the edges of viable pathways and 
then provide auditory prompts to the user, allowing them to continue down the path without 
stepping off.  The program takes a snapshot, analyzes the image to detect edges, and outputs a 
sound to the user, alerting them if they are wandering too close to either side of the path.  The 
program assumes that the user is already on a path when it starts.   

 
3.2 Picture Analysis 
 

The path-detection code takes a picture every 0.1 seconds using only one of the ELP 
720p Super Mini USB cameras.  The picture is cropped, converted to grayscale, subjected to a 
2D Gaussian filter, run through the Canny edge detection, and finally undergoes a Hough 
transform which plots lines over the original image.  Figure 3.1 outlines the process.  The 
program repeats this procedure infinitely thereby simulating a live video feed.  The following 
sections focus on the image processing methods that lead to the detection of the path’s edges.

 
Figure 3.1: This flowchart summarizes the order of imaging methods applied to each picture. 
 
3.2.1 Cropping the Image and Converting to Grayscale 
 
 The image produced by the Super Mini USB camera is 720x1280 pixels and displayed in 
Figure 3.1(a).  Most of the area in Figure 3.1 shows details other than the path such as trees, the 
sky, and fields of grass.  Since the focus is on the sidewalk, everything else can be cropped out.  
The first and last quarters of the horizontal axis, each 320p wide, are removed as well as the first 
410p from the top of the vertical axis.  The remaining 310x640p image is seen in Figure 3.1(b) 
with the path clearly isolated.     

Original	
Snapshot Crop	Image Convert	to	

Grayscale
2D	Gaussian	

Filter
Canny	Edge	
Detection

Hough	
Transform
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Figure 3.2: (a) The full 720x1280p image taken by the ELP 720p Super Mini USB camera. (b) 
The 310x640p cropped image with nearly everything removed except the path. 
 
 The Canny edge detection method is used to find the boundaries of the path but can only 
be applied to a two-dimensional matrix.  Color images are stored as three-dimensional matrices: 
one matrix for the red values, one matrix for the green values, and one matrix for the blue values.  
Each entry in the two-dimensional matrix stores an intensity value, between 0 and 255, 
representing the degree to which that individual color is expressed.  A pixel is simply a 
combination of these intensity values.  For example, a pixel with the values (255, 0, 0) would be 
pure red, (0, 255, 0) pure green, and (0, 0, 255) pure blue.  When MATLAB performs the 
conversion from RGB to grayscale, it averages all three intensity values of the pixel into a single 
value [5]. This creates a single two-dimensional image matrix which, without the third-dimension, 
can only be seen in shades of gray. 

 
Figure 3.3: The image from Figure 3.2 (b) is converted to grayscale.  Each pixel has a certain 
intensity value which determines how light or dark it appears. 
 
3.2.2 Gaussian Filtering  
 

Currently, the image resolution is too high.  If the Canny edge detection method was 
applied now, it would pick out the edges of bricks, rocks, and even individual blades of grass 
instead of focusing on the physical boundaries of the path.  The solution is to blur the image by 
applying a 2D Gaussian filter.  The Gaussian filter works by creating a small square grid, or 
mask, that covers the original image matrix.  The pixel values of the mask matrix are weighted 
using the Gaussian function, 

𝑔 𝑥 = $
%&'

𝑒-
*+,-+

+.+     (3.1) 

(a) (b) 
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where 𝑥 is the distance from the origin on the horizontal axis, 𝑦 is the distance from the origin on 
the vertical axis, and 𝜎 is the standard deviation.  The pixel in the middle of the mask is given the 
highest weighted value while pixels farther from the origin are weighted less. A larger value of 𝜎 
creates a bigger mask, allowing for more entries to be included in the “neighborhood,” 
expanding the effect of the blur [6].  During the filtering process, the Gaussian mask is centered 
on each pixel in the original image.  The intensity value of every pixel under the filter is 
multiplied by the corresponding mask value.  Those numbers are then averaged together and 
produce a singular mean value.  The program creates a new matrix that stores the averaged value 
at the same coordinates as the original pixel. This allows the mask to create a new image without 
altering the values of the original [7].   Once the information is stored, the mask then moves to the 
next pixel and repeats the procedure storing the averaged values in the new matrix.  After the 
process is complete, the original image matrix is completely replaced by the values in the filtered 
one.  Pixels close together with similar intensity values will generally appear as one shade of 
gray.  This breaks up the image into three sections: the dark gray grass on the left, the lighter 
path in the middle, and the dark gray grass on the right.  The program uses a Gaussian filter 
where	𝜎 = 7.  This value was used because it produces a wide mask that does not excessively 
blur the image.  The effect of the 2D Gaussian blur on Figure 3.3 can be seen in Figure 3.4.  

 

 
Figure 3.4: The image from Figure 3.3 is blurred using a 2D Gaussian filter.  Notice the 
distinction between the dark sections of ground and lighter section of the path.   
 

3.2.3 Edge Detection  
 

Now that the image is finally prepared, the Canny edge detection method can be applied.  
MATLAB has several built-in edge detection functions but the Canny method was determined to 
produce the best results.  The Canny method first applies the Sobel edge detection method to the 
image.  The Sobel method creates a mask that scans across the image.  Every time it detects a 
noticeable change in intensity, it plots a point.  The stronger the change in intensity, the brighter 
the point.  This produces an image where the detected edges appear as gradients, lines with 
bright pixels in the middle that gradually fade to black.  The Canny method then runs another 
mask over this filtered image, looking for the local maxima [8].  The mask compares the intensity 
values of all pixels under the mask to the value in the center.  If the center pixel is higher than its 
neighbors, it is recognized as an edge and a 1 is plotted at those coordinates, in a new matrix as 
before [9]. If no edge is detected, a 0 is plotted instead.  In a binary image, the 1 represents a 
white pixel and the 0 represents a black pixel.  The Canny method has two thresholds, one upper 
and one lower, set by the programmer to help distinguish strong and weak edges.  A detected 
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maximum with a value greater than the upper threshold is automatically counted as an edge.  If 
the detected maximum value is less than the lower threshold, it is not counted as an edge.  If the 
maximum value falls between the two thresholds, it is counted as an edge only if it is adjacent to 
a previously detected edge site [9].  Setting a high upper threshold decreases the number of 
potential edges since most of the maxima fall below the limit.  A small upper threshold does not 
provide enough discretion and creates too many potential edges.  Through trial and error, it was 
determined that an upper threshold of 0.275 works best.  MATLAB automatically sets the lower 
threshold as 40% of the upper threshold.  In this case, the lower threshold is 0.108.  Running this 
Canny edge detection method over Figure 3.4 yields the binary image in Figure 3.5.  

 

 
Figure 3.5: A binary image produced by running the image in Figure 3.4 through the Canny edge 
detection method with a lower threshold of 0.108 and upper threshold of 0.275. 

3.2.4 Hough Transform 
 

While it may seem like we have successfully detected the boundaries of the path, Figure 
3.5 is still just a binary image.  The white lines seen in the image are not actually lines at all. ; 
there are no endpoints or parameters attributed to them.  Actual lines segments can be plotted 
over these edges using the Hough transform.  These lines are conveyed in MATLAB in terms of 
endpoints, angle, and length.  This data is crucial in determining the user’s location relative to 
the path. 

The Hough transform works by scanning each row of the binary matrix.  When it comes 
across an edge, that is, when the value in the matrix is a 1, the hough method plots a large 
number of lines through that point.  These lines are represented using only two variables: 𝜃 
which represents the angle between the line and the x-axis, and 𝜌 which represents the 
perpendicular distance from the line to the top left corner of the image [10].  The parameterization 
of these lines is depicted in Figure 3.6.  A line described by 𝜃 and 𝜌 in x-y space looks like a 
line.  However, in 𝜃-𝜌 space, the line appears as a single point.  To be clear, a line in x-y space 
appears as a point in 𝜃-𝜌 space [11].  The next line passing through the original point in the binary 
image has slightly different values for	𝜃 and 𝜌 than the previous one.  This means the new point 
in 𝜃-𝜌 space is plotted slightly away from the last point.  The process continues with each new 
line being slightly different from its predecessor.  The points in 𝜃-𝜌 space start to produce a 
trend. The sheer number of lines passing through the original matrix point creates a sinusoidal 
curve in 𝜃-𝜌 space dictated by the equation 

𝜌 = 	𝑥5 cos 𝜃 + 𝑦5 sin 𝜃 (3.2) 
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Figure 3.6: A simple depiction of how a line can be parameterized using rho and theta. 
 
This means that a point in x-y space corresponds to a sinusoidal curve in 𝜃-𝜌 space [11]. 
Repeating these steps for every point in the binary image produces the images seen in Figure 3.7.  

 
Figure 3.7: The graph depicts points on an x-y plane as sinusoidal curves on the 𝜃-𝜌 plane.  The 
intersections of the sinusoidal curves represent lines that connect those points in the original 
image. (a) The left graph is the Hough transform of Figure 3.2 without Gaussian filtering.  (b) 
The right graph is the Hough Transform of Figure 3.2 with Gaussian filtering. 
 
Since points in 𝜃-𝜌 space represent straight lines in x-y space, the intersection of sinusoidal 
curves represents a line in x-y space that pass through all of the corresponding points[11].  The 
point with the most intersections in 𝜃-𝜌 space is the same as the line that connects the most 
points in x-y space.  The more points in the Canny edge detection image, the more curves in the 
Hough transform.  Figure 3.7 (a) shows the number of curves in the image without the 2D 

Source: https://www.mathworks.com/help/images/ref/hough.html 

(a)                                                                    (b) 
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Gaussian filter while Figure 3.7 (b) shows the number of curves in the image with the 2D 
Gaussian filter.  Reducing the number of curves in the Hough transform reduces the number of 
unnecessary intersections and lines, emphasizing the stronger peaks.  The graphs in Figure 3.7 
span all angles of 𝜃 between -90 and 90 degrees.  A large number of intersections occur on the 
fringes of the graph, between -80 to -90 degrees and between 80 to 90 degrees, indicating the 
presence of several straight, horizontal lines.  Since the focus of this section is to remain on a 
straight path, the range of 𝜃 was limited to values between -65 and 65 degrees.  This eliminates 
any horizontal or near horizontal line from being examined, keeping the focus on the angled 
boundaries of the path at hand. The Hough transform looks for the strongest peaks in the 𝜃-𝜌 
image representing the longest connective line segments which appear to be at -40 and 40 
degrees.  The function then outputs this information as an array that contains the values of both 
endpoints in the x-y plane as well as their values for 𝜃 and 𝜌 [12].  Figure 3.8 depicts the 
information in the line arrays plotted on top of the cropped image from Figure 3.1(b), showing 
that the lines do in fact follow the edges of the path.  For this specific application, the output 
number of lines was limited to two since there are only two edges of the path. 

 
Figure 3.8: The line data retrieved from the Hough transform is plotted over the cropped image 
from Figure 3.1(b) demonstrating the edges of the path were successfully found. 
 
 
Lines with 𝜃 values greater than zero, representing the left edge, are plotted in green and lines 
with 𝜃 values less than zero, representing the right edge, are plotted in red.  The endpoints of 
both lines are plotted yellow.  The colors have no bearing on the program itself but makes it 
easier for us to see what is happening.  Overlaying the Hough transform on the original cropped 
image seen in Figure 3.9, shows that the lines effectively follow the edges of the path.   
 
3.3 Output of Information  
 
 Now that there are actual data structures, it is possible to use this information to prevent 
the user from wandering too far left or right.  The user would be wearing stereo headphones and 
the information would be conveyed to them through sounds in each individual ear.  This is 
accomplished by looking at the slope of the lines.  If the user drifts too close to the left side of 
the path, the left line, depicted in green, appears more vertical, and if they drift too close to the 
right side, the right line, depicted in red, also appears vertical.  These effects can be seen in both 
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images of Figure 3.9.  This means that as the user drifts to either side, the slope of that line 
approaches infinity.  Therefore, the program institutes a threshold for the slope of the left and 
right lines.  If the absolute value of the left slope is greater than 1.5, an electronic chime sound is 
played in the left headphone, signaling to the user that they are approaching the left edge of the 
path.  If the absolute value of the right slope is greater than 1.5, an electronic chime sound is 
played in the right headphone, signaling to the user that they are approaching the right edge of 
the path.  The user would then correct their course based on which side of the headphones played 
the sound, allowing them to safely walk down the rest of the path.   

 

Figure 3.9: (a) The Hough transformed overlaid on an image where the user is standing on the 
left edge of the path.  Notice how vertical the green line appears. (b) The Hough transformed 
overlaid on an image where the user is standing on the right edge of the path.  Notice how 
vertical the red line appears. 
 
3.4 Chapter 3 Conclusion 
 
3.4.1 Key Findings 
 

1) The program can successfully detect the boundaries of pathways using a combination of 
the 2D Gaussian filter, Canny edge detection, and the Hough transform.  The program 
can also provide auditory feedback that prompts the user to stay on course.  Overall, the 
program seems to be a satisfactory foundation for a future guiding system. 

 
2) The edge detection can be finicky if the distinction between the path and surrounding 

area is not well defined.  Abnormally large, narrow, or round paths can also cause 
confusion in the edge detection process and yield unusable results.   

 
3.4.2 Suggestions for Further Research 
 

1) Re-explore the thresholds in the 2D Gaussian filter, Canny edge detection, and Hough 
transform functions.  There are many combinations of these thresholds that could affect 
each other in different ways.  Re-examining the application of these thresholds might 
yield better images than the values I used.   
 

   (a)                                                  (b) 
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2) Experiment using both of the ELP 720p Super Mini USB cameras and determine if 
stereoscopic vision has the potential to increase the accuracy of path detection.  

 
3) Find a better solution to determine the at what point the user drifts too far left or too far 

right.  Currently, there is an absolute slope threshold of 1.5 on both sides that triggers the 
auditory output when exceeded.  Since paths take on a variety of shapes, this absolute 
value is ineffective in some cases.  I believe there is a relation between the slope of the 
lines and the distance between the bottom endpoints that could provide the solution.  

 
4) The output to the user should not be auditory in nature.  The sounds from the system 

became irritating after a short period of time.  Investigate tactile feedback systems such 
as vibrations or maybe determine what works best for a majority of the visually impaired 
population.   
   

4 Detecting Objects by Patrick Rice 
 
4.1 Introduction 
 

Using images captured from two ELP 720p USB Camera Modules, I experimented with 
different techniques to find the best method of locating potential hazards within the user’s path. 
Objects such as: people, benches, trees, etc. all pose a potential danger to the visually impaired. 
These objects often have unique characteristics that can be utilized to extract them from a larger 
image. An object’s color, edges, and position relative to the camera are all features that can be 
used in the detection process. The following sections of this chapter explore two different 
method of detecting objects. The first explains a method for detecting objects solely based on 
their color while the latter gives a more in-depth process that utilizes stereoscopic imaging.  
  

All the techniques mentioned in the sections of this chapter are carried out using 
MATLAB software. MATLAB stores image data in m by n by 3 arrays, where m and n represent 
the images resolution. Each pixel of the image has a corresponding red, green, and blue value. 
These values are unsigned 8-bit integer values that range from 0 to 255 that are recorded inside 
the array. [13] Once the image is stored, one can mathematically manipulate the arrays to further 
isolate important characteristic from the image data. 
 
4.2 Detecting Objects of a Single Color 

 
One method of object detection is to differentiate objects based on color. The goal of this 

experiment was to create a program that can identify red objects within an image. At first glance 
one might be tempted to isolate pixels that meet a certain threshold in the red portion of the 
image array. Their reasoning being all pixels with a high red value must be part of a red object.  
However, colors such as purple, brown, and while all have equally large red values and so the 
problem becomes finding a color space where different colors are represented in such a way that 
they can be filtered easily. Therefore, the program starts by converting the image data from the 
typical red, green, blue color space (RGB) to hue, saturation, value color space (HSV). In HSV 
color space hue refers to the angular position of the color on a color wheel. Because each color 
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has a distinct angular position it is possible to isolate the red section of color wheel without fear 
of including any unwanted colors. [14] Saturation describes how white the color appears to the 
naked eye. Holding all else equal, pixels with low saturation appear less vivid and often have a 
gray tinge. Value on the other hand describes a pixel’s brightness. Pixels with a value of zero 
appear black and become lighter as value is increased. By placing thresholds on a pixel’s value 
and saturation, it is possible to filter out certain shades of colors as well as any pixels that 
entirely black or white. [14]  

    
Figure 4.1: Original image (left). Binary Image created using specified HSV thresholds (right).  

 
To demonstrate the effectiveness of isolating objects based on color, consider the left 

image in Figure 4.1. The image contains several red balloons mixed in with balloons of various 
colors that the program is trying to differentiate between. The right image in Figure 4.1 shows 
how the program creates a binary array with entries of either 1 or 0 to mark which pixels are 
within specified hue, saturation, and value thresholds. Once the program processes the image 
into a binary format, one can locate the red objects using MATLAB’s Image Processing 
Toolbox, which denotes large clusters of white pixels in the binary image as distinct objects. The 
result of this process is shown in Figure 4.2 where the program has placed green bounding boxes 
around each of the red balloons. It is important to note that while the program succeeds in 
identifying where all the red balloons are in the image, it mistakenly identifies some balloons as 
two separate objects. This is a flaw in the program as it has trouble when objects are partially 
obscured. Detecting monochromatic objects may be an overly simplified version of our 
expressed goal for this research, however the ability to differentiate between objects of varying 
color is an important step in object classification that could be utilized later.  
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Figure 4.2 The final output from the color detection program. Each green bounding box represents 
what the program has identified as a distinct object.  
 
 
4.3 Utilizing the Difference in Stereoscopic Images 
 
4.3.1 Theory 

  
Figure 4.3 Diagram for stereoscopic imaging set up  

 
Stereoscopic imaging is the process of taking images from two cameras that are 

horizontally offset from one another to create the illusion of depth. This is demonstrated in 
Figure 4.3 which shows the two cameras are separated by a distance b and there is an object a 
distance D from the cameras. The object appears 𝑥<  pixels from the center of the image taken by 
the left camera and 𝑥= pixels from the center of the image taken by the right camera. Using basic 
trigonometry, we find: [15] 

𝐷 =
𝑏𝑥@

2tan	(𝜃2)(𝑥< − 𝑥=)
(4.1) 

This function shows that the distance an object is from the cameras is inversely 
proportional to the disparity (in pixels) between its position in both images. To verify this 
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relationship and obtain a value for the constants in equation 4.1, I took several pairs of images 
containing a target and recorded the disparity between the targets location in each. The graph in 
Figure 4.4 shows that the relation is indeed as described in equation 4.1 and gives a value of 
14.22 meters times pixels for the relevant constants. 

 

 
Figure 4.4: Graph showing the relationship between the difference (in pixels) of a target’s 
location within two images vs. measured distance away from the cameras 

 
4.3.2 Picture Analysis  
 The program created for object detection works using images captured by two ELP 720p 
USB Camera Modules set up in the configuration shown in Figure 4.3. The technique for 
detecting objects in the images focuses mainly on the array created by taking the difference 
between the two images. Based on equation 4.1, as an object’s distance from the cameras 
increases the difference between its location in each picture approaches zero. This means that 
objects in the background of the images share the same position in both images, while objects 
closer to the cameras display a horizontal shift. The steps the program takes to identify these 
shifts are laid out in the following sections. 
 
4.3.3 Loading Images  

 The program loads image data similarly to the color detection technique but in addition 
converts the unsigned 8-bit entries to double precision values. This simply means that every 
integer in the original image arrays are converted to floating-point values capable of being either 
positive or negative. Figure 4.5 shows the type of images the program uses as input data. From 
these images, it’s possible to see that the person within the path has shifted from one image to 
the other, but it hard to determine by exactly how much. In order to see this shift more clearly the 
program subtracts the two images to create a difference array. The easiest way to visualize this 
array is as a heat map (shown in figure 4.6b). Pixels with a light green color represent a value of 
zero while positive and negative values are displayed as red and blue respectively. Values closer 
to zero in the difference array represent pixels in each of the respective images that share the 
same physical point in space. In contrast, the portions of the image that are a dark blue or red 
denote an object’s horizontal shift between the two original images.   
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Figure 4.5: A sample pair of stereoscopic images with an object inside the path 
 
 
4.3.4 Adjusting for Vertical Misalignment 
 A necessary requirement for using equation 4.1 to estimate the depth of object in a set of 
images is that the stereoscopic cameras are aligned vertically. To adjust for any vertical 
misalignment between the two images, the program examines the total difference in pixels as one 
image is translated downwards. The point where the total difference between the two images is at 
a minimum represents when the two images are vertically aligned. Due to small differences 
between the two cameras the program determined the right image was shifted 35 pixels up 
compared to the left. To correct for this the top 35 rows of the right image and bottom 35 rows of 
the left image are cropped out. The result (shown in in Figure 4.6b) is a difference array of two 
vertically aligned images. 
 

  
Figure 4.6a: Original difference array 
Figure 4.6b: Difference array after correcting for unwanted vertical shift. 
 
4.3.5 Determining the Boundaries of the Object 
 

To better pick out the portions of the array that represent the object, the program first 
crops the image to focus on the middle 800 pixels of the image as is demonstrated in Figure 4.7. 
This does not affect the final outcome of the program as it is assumed that the user is in the 
middle of his/her path and does not need to worry about objects outside of it. After cropping the 
image, the program creates a “coarse-grained” array by setting entries of the difference array that 
meet a certain threshold to 1 and entries that do not to 0. It does this separately for the “cold” 
(negative) and “hot” (positive) portions of the array. The resulting binary images are shown in 
Figure 4.8.  From this figure, it is easy to see the difference between what the program has 
determined to be unnecessary background information and the object it is trying to detect. 
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Figure 4.7: Heatmap image of the difference between the two stereoscopic images in Figure 4.5.  
 

 
Figure 4.8: Coarse-grained images based on a preset threshold. 

 
The next step in program is to determine the left and right boundaries of the object. 

Examining the column sum of the entries in the coarse-grained arrays, one expects to see larger 
values in areas that correspond to the portion of image containing the object. The graphs in 
Figure 4.9 show just that; the large spike in values in the left graph corresponds to the “cold” 
side of the object. Similarly, the peak in the right graph demonstrates where in the difference 
array the “hot” side of the object is located. 
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Figure 4.9: Plot of the column sums vs column indices for both “hot” and “cold” arrays 

 
By differentiating the functions in Figure 4.9 it is possible to get a value for where the 

object’s shift begins and ends. Figure 4.10 shows the result from this differentiating. The sharp 
spikes refer to points of significant change in the column sum values. Consequently, the 
maximum and minimum values in these plots signify the edges of the object in both of the 
original stereoscopic images. For example, in Figure 4.10, the global maximum in the left graph 
at x = 228 represents the object’s left boundary in the left image.  The global minimum at x = 
236 represents the left boundary in the right image.  

 

 
Figure 4.10: Differentiation of the column sum plot with respect to column indices 
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 Once the program determines the object’s left and right boundaries it corps the original 
image further to only include the columns that have the object inside them. The program then 
finds the top and bottom boundaries in a similar fashion as the left and right by taking the row 
sum of the cropped image. Once the program determines all the boundaries associated with the 
object it outputs an image with a bounding box around the region of interest. This output image 
is shown in Figure 4.11. Furthermore, objects horizontal shift can be used in equation 4.1 to 
conclude how far the object is from the user. This information is valuable as it lets the user know 
how far before he/she has before a possible collision. 
 

 
Figure 4.11: Final image with bounding box around the object   
 
 
4.4 Chapter 4 Conclusion 
 
4.4.1 Key Findings   
 

1) Detecting an object based on its color is a viable method when the object is relatively 
monochromatic.  
 

2) The program designed to analyze sets of stereoscopic images was able to identify 
potential hazards within a path based solely on the difference between the two images. 
Objects approximately 1 to 2 meters in height with straight edges are detected once they 
are within 2 meters of the user. However smaller objects with less defined edges were 
difficult of detect. 
 

3) Once an object has been detecting accurately in both images the horizontal shift is 
measurable and correlates to how far away the object is to the user. This information can 
be relayed as an output of the program and gives the user an idea of how far he/she can 
travel before a collision is likely. 
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4.4.2 Suggestions for Future Research 
 

1) Explore the use of computer learning algorithms as a means of identifying and classifying 
objects within an image. These types of programs require a large amount of time to train 
but result in a more versatile method of object detection.  

 
2) Consider using the images acquired from the two webcams to create a three-dimensional 

representation of the user’s surroundings.  
 

3) Build a self-contained unit with a microprocessor capable of running the different 
programs described in the paper. If this project is to one day be a wearable device to 
assist the visually impaired more research is required on the necessary hardware.  

 
 

5 Detecting Elevation Changes by Amit Verma 
 
5.1 Introduction 
 

Following the detection of paths and objects, the detection of sudden elevation changes is 
equally vital to a person being able to walk safely. Changes in altitude while walking are 
common, and an overwhelming majority of these changes do not present themselves as gradual 
changes. The most frequent instance of a sudden elevation change would be stairs, and these can 
pose as both an inconvenience and danger to the visually impaired. Figure 5.1 illuminates the 
necessity of an elevation detection system. For the figure, if path detection alone was used for 
walking assistance, then the individual would be kept on the sidewalk, but there would be no 
warning of the upcoming steps. 
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Figure 5.1: Steps leading up to house passed through path detection system, with no indication of 
the stairs. 
 

The picture above demonstrates the need for a complete guidance system to have a 
method to detect elevation changes. The proposed solution is to use a distance sensor mounted 
on the body, that scans the ground immediately in front of the individual walking for significant 
deviations in elevation. When a change in elevation is detected, the device relays this to the 
person and instructs them on how to adjust their actions. More specifically, the primary concern 
of this elevation system is to detect the first step going up or down, as once a person manages the 
first step, it is relatively easy to continue taking steps without needing to know their exact 
position due to the consistent size of stairs. Similarly, gradual changes in elevation such as slopes 
and ramps are not necessary to detect because they are possible to navigate solely through walk 
and feel, although if the change is significant enough the sensor would detect it. 
 
5.1.1 Overview of Chapter 
 
 Section 5.2 and 5.3 discuss the sensor used, including its functionality and tests of its 
limitations. Section 5.4 discusses tests with the rolling board, with the rocking motion from 
walking was eliminated. Section 5.5 explains the issues associated with walking, as well as tests 
with the sensor on the shoe and on the shin. Section 5.6 concludes the chapter with a summary of 
findings and suggestions for further research.  
 
5.2 The Sensor 
 

The sensor used for the project is a Time of Flight (ToF) sensor. Specifically, it is the 
VL53L0X by Adafruit. The sensor is meant to be used with a microcontroller, and for this 
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project it is used with an Arduino Uno connected to a laptop to read distance measurements off a 
serial monitor. The sensor costs about $15 and along with its housing and circuit board is smaller 
than a quarter. Figure 5.2 is a pinout diagram for the sensor and an Arduino board. 

 

 
Figure 5.2: Pinout diagram of Arduino Uno and VL53L0X sensor [16]. 
 

This ToF sensor is an infrared sensor, and it works by sending out an IR laser at 940 nm 
perpendicular to the sensor and then timing how long it takes for the light to reflect off a surface 
and return to the sensor. Based on the time it takes for the light to return, the sensor uses the 
speed of light and calculates the distance to the surface [17], and the measurement is then 
displayed on a serial monitor. The sensor is marketed with a range of 30 mm to 1000 mm and a 
field of view of 25°. A maximum range of ~1 meter means that the sensor needs to be attached 
below a person’s waist to detect the ground, and the consequences of this limit on positioning 
will be revisited later. The delay on how often the sensor takes measurements is configurable 
within the code used, however there is an internal delay of 35 milliseconds for the sensor to carry 
out a reading. Another limitation of the sensor is its inability to take readings from all surfaces; 
darker surfaces pose a problem because of their lower reflectance, and this can result in an error 
code if the sensor is detecting these surfaces. The code used for all the tests is a modified version 
of the sample code given for testing the sensor online. 

 
The other common devices used for distance measurements are cameras and ultrasonic 

sensors. The IR sensor was chosen over these other options for a couple of reasons. Namely, it 
was cheaper, smaller, and more precise, which were the pertinent choices to be made. Cameras 
are too slow at taking distance measurements compared to IR sensors, and while slower 
measurements are acceptable for path and object detection because those are things that can be 
detected in the distance and stay relatively constant with motion, stairs need to be detected 
quickly, and within a certain range to ensure a warning can be given in time. Ultrasonic sensors 
were not used because they need to have a larger detecting area, and this makes errant 
measurements that could result in inaccurate directions for guidance more likely.  
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5.3 Sensor Tests 
 
 Two accuracy tests had to be carried out to test the VL53L0X’s limitations. The purpose 
of the first test was to test the distance accuracy for the sensor as well as the reported min/max 
range of 30 mm to 1000 mm. The second test was designed to measure the sensing cone against 
the field of view given in the datasheet of 25°. 
 
5.3.1 Distance Accuracy Test 

 
To test the accuracy, the sensor was set up at the end of a table, with a measuring tape set 

out along the table. A flat object was then moved down the tape with measurements taken 
intermittently. A picture of the set up for the test is below. 
 

 
 

Figure 5.3: Image of accuracy test set-up. 
 

Measurements were taken by setting the sensor delay to one second and taking ten 
readings. The ten readings were then averaged and plotted on Figure 5.4. More measurements 
were taken towards the ends of the sensor’s range as these were important positions. The first 
graph below is of the entire range tested. The second is of the section from 0 mm to 100 mm to 
show how the accuracy tails off at short distances. The dotted line represents how a perfect 
sensor would function. 
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Figure 5.4: Graph of accuracy test for sensor, tested from 10mm to 1150mm. Second graph is a 
close-up of measurements from 10mm to 100mm. Note that the accuracy tails off before 40 mm 
and past 1000 mm. 
 

The linear portion of the graph, from 40 mm to 1000 mm shows that the sensor is 
accurate, with a small error of 1.49%, for this range. Inaccuracy in measurements below 40 mm 
is acceptable, as once an elevation change is within 4 cm it is likely too close for any warning to 
be effective. To set a standard practice for data-taking, any measurements that were given as out 
of range by the sensor were set to be reported as 2.5 m. This was outside the reported range for 
the sensor, and ensured that the data was still usable and shown as well out of range. 
 
5.3.2 Field of View Test 

 
To test the field of view, the sensor was set on a swivel in line with the corner of a 

doorway. This was set as the angle of 0° for the sensor, and the sensor was then rotated away 
from the doorway. The goal was to rotate the sensor by a few degrees at a time and to take 
readings until the sensor completely lost sight of the doorway. These measurements were 
averaged from 10 readings at a one second delay. The three diagrams in Figure 5.5 illustrate 
stages of the test. 
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Figure 5.5: 1) the 90° line from the sensor is at the edge of the doorway, 2) sensor is rotated 
slightly so that middle of laser is away from the doorway, but the cone still detects the doorway, 
3) the cone is entirely clear of the doorway and nothing is detected. 
 

This only tested half of the field of view, so the test was replicated on the other side of 
the sensor, rotating the other way. The results are below, and although not incredibly precise, 
they are consistent enough with the value for the field of view given in the datasheet that we feel 
comfortable using 25° as the value. The results from this test at 500 mm were consistent for 
other distances tested as well. 

 
 

 
Figure 5.6: Graph of the two rotation tests, for both sides the tests were accurate until 11°-12°. 
Past these angles, readings became inconsistent and at 13°, all measurements were out of range.  
 

Understanding the field of view is important, because it dictates how large of an area the 
sensor detects. The light from the sensor does not travel in a single line, it spreads from the 
sensor, and the further the sensor is from the ground, the wider the spread is. Using trigonometry, 
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and based off 1) the field of view, 2) the height of the sensor from the ground, and 3) the angle of 
the sensor with respect to the ground, the equations below can be derived for the length of 
ground the sensor “sees”. The variables in the equations correspond to the diagram, with x1 being 
the distance behind the middle line and x2 being the distance in front. This is relevant for 
understanding exactly when the sensor should begin detecting a step as it approaches the stairs 
once it is set at a certain angle.  

 

 
Figure 5.7: Illustration of sensing cone at angle θ to the ground. Note that on flat ground, x2 will 
always be larger, but there will be a higher light intensity in x1. 
  

 𝑥$ =
J∗LMN $%.O°

QRL S LMN	(TT.O°US)
    𝑥% =

J∗LMN $%.O°
QRL S LMN	(TT.O°VS)

 
 

The cone, and corresponding x1 and x2 also determine what the distance that will be given 
is weighted towards. That is, if there is significantly more surface to be reflected off in x1 or if 
the surface is closer in x1 (if it were elevated for instance), then the measurements given will be 
shorter than the straight-line distance from the sensor to the ground. This will be relevant in the 
next section. 

 
5.4 Rolling Board 
  

The rolling board consisted of attaching the sensor with the angle setter to a board with 
wheels. This group of tests had two sections and an image of the board is given in Figure 5.8. 
The sensor was set to 340 mm off the ground because this replicated the height of the sensor 
affixed to mid-shin, but the angle for the sensor was changed between the two parts. 
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Figure 5.8: Image of board, sensor is on angle setter to the left and connected to Arduino Uno at 
the end of the board.  
 
5.4.1 Rolling Board to Stairs 

 
The first part involved rolling the board to a step, and the goal was simply to see what 

changes in elevation were recorded.  This was performed on flat ground as well as for a set of 
stairs going both up and down. The delay was set such that measurements were taken every 100 
ms, and the board was slowly pushed each time. The sensor was set to 45° for all three tests 
because this made calculating the horizontal range for the sensor simple, and was a middle angle 
that could be adjusted up and down as necessary for later tests depending on the results.  
 
5.4.1.1 Rolling on Flat Ground 
 

For flat ground, at an angle of 45° and a height of 340 mm, the distance reading for the 
hypotenuse was expected to be ~480 mm. The graph for flat ground data trial is given in Figure 
5.9.  
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Figure 5.9: Graph of readings given by rolling on flat ground. 

 
 The graph shows an almost linear reading with zero slope, at an average distance of 476 
mm. The zero slope was expected because the elevation is not changing, and the average 
measured value is close to the calculated value. There is an error of 1.95% in the readings from 
the expected reading of 480 mm, but the error is slight, and every deviation from the expected 
value is within 50 mm which is small in comparison to the height/depth of a step, meaning that it 
can essentially be disregarded. This trial creates a requirement for the trials going up and down, 
in that the elevation change they record should be initially zero like this trial and then show a 
change greater than 50 mm so that we can be sure that elevation changes are recognized by the 
sensor. 
 
5.4.1.2 Rolling Towards Step Going Up 
 

 
 

Figure 5.10: Graph of rolling on flat ground to step going up. 
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This graph shows a flat approach from 0 s to 20 s, and then the distance from the ground 

to the sensor starts to quickly shorten up from 21 s to 22 s, as the board approaches the first step. 
At 20s, the board is around 40 cm from the step, as determined from the second equation in 5.3.2 
and the sensor being at 340 mm. Past 22 s, the measured distance to the first step has an average 
reading of 230 mm. The expected value for the distance from the sensor to the step is 226 mm, 
which is consistent with the measured result and a significant deviation from 480 mm. The 
diagram below helps to illustrate what the sensor is seeing as well as the calculation of the 
expected distance for the top of the step. The smooth curve from 21 s to 22 s is due to the sensing 
cone, as its weighting for where more values are coming from transitions from the bottom of the 
stair to the top. 

 

 
 
Figure 5.11: 1) Sensor rolling on flat ground towards step, 2) Sensor begins to detect the step and 
distance smoothly shortens up as it gets closer, 3) Sensor clears the step and forms a new 45-45-
90 triangle with the higher ground which allows for the calculation of the expected final distance. 
 
5.4.1.3 Rolling Towards Step Going Down 
 

 
Figure 5.12: Graph of rolling on flat ground to step going down. 

 
 This graph shows a flat approach to the down step for 13 s, and then a slight dip in the 
distance readings until 14 s, where the readings go to infinity as the sensor fails to receive 
enough reflected light. The reason for the dip and the infinity reading is the field of view of the 
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sensor moving across the stair. As mentioned at the end of section 5.3.2, when there are 
significantly more reflected beams back from one side of the cone, the measurement ends up 
weighted in that direction. In this case, as the cone started to cross the edge of the staircase, the 
x1 section behind the middle line dominated the reading. Eventually enough of the cone crosses 
that the sensor receives no reflection. The reading of no reflection is useful, because the sensor is 
seeing the down step as if the world is falling away, and this can be easily translated for the user 
as a major decrease in elevation. Related to this, an important takeaway is that it might not be 
necessary for the exact elevation change to be known for proper guidance, only that the threshold 
for what would be considered a severe change has been crossed, as well as its direction. Figure 
5.13 is to assist in understanding the reason for the results. 
 

 
 
Figure 5.13: 1) The sensor is rolling on flat ground towards the edge of the step, 2) Sensor cone 
begins rolling past step, and at this point nothing is being reflected back in x2 so reflected light in 
x1 gives a reading that is shorter than the middle line/flat ground reading resulting in the dip in 
Figure 5.12, 3) The sensor cone completely passes the step and the distance measurements go to 
infinity as nothing is reflected back. 
 
5.4.2 Predicting Distance for Stair Detection 

 
Following the success of the sensor on the board in being able to recognize elevation 

changes, the goal of the second experiment with the rolling board became predicting at what 
distance the steps would be visible in data by converting time to distance. This consisted of 
connecting the board to a winch, setting it at a specific distance, and then rolling it at a constant 
speed and predicting at what point the sensor would detect the step. For this test, only the down 
step was used because it was more manageable physically than the up step, and the results would 
be cleaner because the distance goes to infinity. The reasoning for this test is that when walking, 
the necessary capability of the sensor is the functional distance for which it can detect stairs, 
rather than the time it detects stairs at. 

 
The angle of the sensor for this test was adjusted to match the angle of the stairs. This 

meant changing the angle from 45° to 60°, and this was done to make the change of when the 
edge of the staircase was crossed more drastic, as well as to attempt to increase the range the 
sensor could see ahead.   

 
The speed for the board was set to 21 cm/s with the winch, and the board was set to 208 

cm from the edge of the stairs. At 60° and 340 mm, it was calculated that the sensor could see 
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~60 cm in front of the board. From this, it was predicted that the board would detect the down 
step first at 148 cm from the starting point (208 cm – 60 cm). Figure 5.14 is the graph of the data, 
and the time axis from earlier graphs has been converted to distance by multiplying time by the 
speed of the board. The prediction for when the sensor should detect the stair is on the graph as 
the solid line, and the dashed line gives the actual position for where the step was detected. The 
expected line is at 148 cm, whereas the actual distance on the graph where the stair is noticeable 
is at 135 cm. The sensing cone being at 60°, which tilts far more in favor ahead of the sensor’s 
middle line than behind, may account for the 13 cm difference, which gives the board a detecting 
range of 73 cm instead of 60 cm. The sensor’s readings are weighted slightly ahead because of 
the cone, and this allows the rolling sensor to detect the step earlier than calculated.  

 

 
Figure 5.14: Graph of rolling to down step, similar to Figure 5.14 but with a larger flat ground 
distance and dip because of the shallower angle of the sensor. 

 
As mentioned earlier, this test was not replicated for rolling to an up step, because it was 

difficult to maintain a constant speed, but given the results, it is reasonable to assume that the 
same method would work to estimate the distance to detect a step up. 
 
5.4.3 Summary of Rolling Board Tests 
 

This grouping of tests with the rolling board demonstrates that the behavior of the sensor 
with detecting elevation changes can be predicted and is consistent with what one would expect 
from the sensor. Stairs going up are visible in the data as a sudden shortening of distance 
readings, stairs going down are visible as the sensor going to infinity once the staircase begins, 
and flat ground is visible in the data as a level line with no slope. Additionally, if the distance 
from the stairs and the speed of the board are known quantities, then it can be reasonably 
estimated for the distance at which the step is visible to the sensor. This sets the stage for moving 
the sensor from a rolling board to a person, as a person can walk with regular speed and the 
sensor can be set to a specific angle/height on the body, but the crucial difference is how the 
movement associated with walking affects the readings from the sensor. 
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5.5 Walk Cycle 
 
 Due to the short maximum range of the sensor, the sensor must be placed somewhere 
below the knee to be effectively used. This portion of the leg is one of the parts of the body that 
moves the most while walking, and this adds an extra cyclical vertical movement when moving 
forward that was not present with the rolling board. Figure 5.17 is a drawing from an animator’s 
website to illustrate this cycle, and shows that with each step the foot/leg swings through many 
angles. 

 
Figure 5.15: Walk cycle of foot [18], arrows are added to show the change in angles. 
 
 Consequently, it was believed that since the foot is at the end of the knee-leg lever 
system, the motion due to the walk cycle would be the most exaggerated with the sensor on the 
foot. To test this, the sensor was mounted on the front of a shoe, as shown in Figure 5.16. 
 

 
Figure 5.16: Sensor on shoe, angle was set by fastening the sensor to a piece of metal. 
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The graph below shows the effect of the walk cycle, by giving sensor readings from 
walking on flat ground with the sensor at 90°. 
 

 
Figure 5.17: Graph of walking on flat ground with the sensor oriented at 90° on the front of a 
shoe. 
 

The data is cyclic as can be seen by looking at the portions at 5 s, 7.5 s, and 8.5 s, but the 
deviations for each step are extreme, because for every cycle of the step there is a portion where 
the foot points away from the ground (label 12 in Figure 5.15), and the sensor goes to infinity. 
This arrangement would not work even if it was on the rolling board, because at 90° parallel to 
the ground the sensor should never detect anything, however the purpose of this test was to show 
the extra vertical motion detected by the sensor due to the walk cycle. The logical progression is 
to tilt the sensor down, so that the sensor stays oriented on the ground throughout the foot 
moving. So, as was done for the board, the sensor was set to 45°. The reasoning behind 45° is 
that it worked well with the field of view for the sensor on the board, in that it did not weigh the 
cone too heavily to the front, unlike 60°, and that it makes it simple to determine how far the 
sensor sees because the legs of the triangle are equivalent. Figure 5.18 is of the sensor on the 
front of the shoe at 45° walking on flat ground. 

 

 
Figure 5.18: Graph of walking on flat ground with sensor at 45°. 
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 For all the walking tests, the sensor is on the right shoe, so the graphs only show half of 
total movement, meaning that there would be another graph shifted half a period from these 
graphs for the left foot. As compared to the rolling board on flat ground (Figure 5.9), there is far 
more regular deviation in the sensor’s measurements. The deviation is a considerable amount, at 
near 200 mm, which is close to the same deviation seen for when a step was detected by the 
sensor on the board. The effect of this is that if a distance threshold was set for identifying the 
step as mentioned at the end of the rolling board section, it would likely be errantly triggered 
during the step cycle. Nevertheless, for this graph the walk cycle due to the steps is much clearer 
than for 90°. The flat periods are when the right foot is stationary as the left foot is moving. The 
slight dips following the flat sections are the parts of the cycle (Figure 5.15) labelled 4-10 when 
the foot is pointed towards the ground and is moving forward. The rise and the peaks past the 
dips are from 11 and 12 when the foot swings away from the ground but the sensor at 45° 
manages to stay oriented towards the ground. The return to the ground are labels 13 and 1 where 
the foot comes back to a flat position on the ground to wait for the left foot to move. 
 
 Ideally, with a consistent cycle for the shoe it would perhaps be possible to have a 
running average and then trigger a threshold for when the average gets higher for a stair going 
down or lower for a step going up. For this sensor position though, there are a few issues that 
make it unrealistic for stair detection. For one, the height of the sensor for a distance reading of 
85 mm at 45° means that the sensor is only at 60 mm, and can only see 60 mm ahead. This is not 
nearly enough of a detection zone to give time for a warning that can be acted upon to be relayed 
to the user. Additionally, because the sensor is on the foot, it is at the furthest point in the swing 
of the leg. The logical step is to move the sensor up the leg, to increase the distance the sensor is 
detecting over, and to reduce how much swing the sensor experiences with each step. 
 
 To mount the sensor higher, it was placed on a wooden brace fastened to the shin. The 
sensor was attached at mid-shin, 34 cm from the ground, equivalent to the height for the sensor 
on the rolling board. Then, like the rolling test in section 5.4.1, we walked to a staircase from 
below and above. Figures 5.18 and 5.19 are graphs of the two tests. 
 

 
 

Figure 5.18: Graph of walking towards stair going up with sensor on brace. The arrow indicates 
the location of the step, and 16 s to 18 s should be compared to Figure 5.11. 
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Figure 5.19: Graph of walking towards stair going down with sensor on brace. The arrow 
indicates the location of the stair, and should be compared to Figure 5.12. 

 
 There a few important things to note from these graphs. Crucially, for both tests, the stair 
at the end was detected. In the first graph, it is shown by the decrease in elevation at 16 s, where 
the stair is close to the sensor just as it was for the rolling board (Compare to Figure 5.10). In the 
second graph, it is shown by the sustained measurement at infinity at 14 s (Compare to Figure 
5.12). Notice however that there are other measurements at infinity on the flat ground prior to the 
stairs for both tests. This was not due to the sensor swinging away from the ground as it was for 
the shoe test, but instead must be due to the sensing cone becoming too large at some points 
during the swing due to height. Somewhat similarly, the range of measurements per each step 
cycle was greater than it was for the sensor on the shoe. For the shoe, the range was from 85 
mm-290 mm, but for the sensor at the shin it was from 380 mm-680 mm. This was counter to the 
reasoning for moving the sensor up the leg, and a different approach is needed to allow for 
walking and detecting stairs simultaneously. The issue is clearly not that 34 cm is too high, 
because it worked for the board, but that the movement of the leg is too severe to allow for the 
sensor to work properly. 
 
5.6 Chapter 5 Conclusion 
 
5.6.1 Summary of Findings 
 

1) The VL53L0X sensor is accurate between 40 mm-1000mm with an error of 1.49%, and 
has a field of view of 25°. 

2) In the absence of the rocking associated with walking, the sensor can identify both 
upward and downward elevation changes from 340 mm away, and these can be relayed to 
the user by setting an upper and lower distance threshold. 

3) When using the sensor while walking, the step cycle due to leg movement can be tracked 
consistently, but the cycle poses a problem for readily detecting elevation changes. 

0

200

400

600

800

1000

0 2 4 6 8 10 12 14 16

Di
st
an
ce
	(m

m
)

Time	(s)

Flat	Ground	to	Down	Step	(34cm,	45°)



 

 

36 

4) Moving the sensor higher up the leg gives a larger range for detection but also makes 
stair detection more difficult by exacerbating the effect of the step cycle. 
 

5.6.2 Suggestions for Further Research 
 

1) Move the sensor above the waist, because there is less vertical movement associated with 
walking above the legs. This will require changing the sensor’s current configuration or 
finding a sensor with greater range. Moving the sensor to the chest would allow the entire 
guidance system to be consolidated into one location. 

2) If the sensor is to stay on the leg, try a different method from setting a distance threshold 
for detecting elevation changes. A rolling average might work, but it would require 
tracking the walk cycle exactly and taking extremely quick measurements. 

3) Use a different microcontroller. The Arduino is cheap and easy to operate as far as coding 
goes, but requiring a laptop for all data collection is slow and inconvenient. 

4) Create a single housing unit for the microcontroller and sensor to avoid the hassle of 
dealing with exposed wires. 
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6 Conclusions 
 

In conclusion, the objective of this research project was to create a guidance system for 
the visually impaired. The project was split into three functions: 1) path detection, 2) object 
detection, and 3) elevation detection.  The programed designed to detect the boundaries of 
pathways is most effective for straight, well defined sidewalks.  Relying on Canny edge 
detection and the Hough transform, the program is able to identify both edges of a sidewalk and 
plot lines over these edges in real time.  The slope of the plotted lines tells the user their 
proximity to the path’s edge.  A sound emitted by the headphones from the side they are 
approaching signals to the user to change course. While the sound is effective in guiding the 
user, it can be tiresome to listen to.  Research into tactile outputs such as vibrations will most 
likely provide a less irritating response.  Other difficulties occur if there is not a clear distinction 
between the sidewalk and the rest of the ground.  Narrow walkways, very large walkways, and 
curving sidewalks all pose challenges to the current program.  Possible resolutions for these 
problems involve going back to the image processing methods and re-examining their thresholds 
and parameters. The use of stereoscopic vision to detect edges is another avenue of potential 
research that would fit in nicely with the next function.  The program created to perform object 
detection is able to correctly identify the location and outer boundaries of potential hazards 
within the user’s path. The program functions best when presented with objects that have sharp, 
defined edges that are no further than 2 meters from the user. Once an object has been detecting 
in both images the program can accurately estimate how far the user can travel before having to 
change their course. Currently it is not possible to detect multiple objects using stereoscopic 
imaging, because the program has no way of differentiating between one object’s horizontal shift 
from another’s. Future research focused on being able to better identify and track multiple 
objects at one time would greatly alleviate this problem. For elevation detection, the IR sensor 
used can detect elevation changes when vertical motion due to movement is minimized, but the 
short range of the sensor makes using the sensor while walking a challenge. Suggestions for 
future research could involve using a sensor with a larger range or changing the method by 
which elevation changes are detected.  Separately, our devices perform as expected, although 
some minor alterations might be beneficial.  A challenge for future developers is compressing 
three separate devices and methods into one apparatus.  These researchers need to be aware of 
how to deal with three different sensory inputs from three different sources.  Overall, we believe 
that our individual devices provide a solid foundation for a future project that would more 
completely assist the visually impaired. 
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Appendix A: Path Detection MATLAB Code 
 
clearvars 
[chime,Fs] = audioread('electricchime.mp3'); 
left = chime(:,1)'; 
right = chime(:,2)'; 
out_left = [left; zeros(size(left))]; 
out_right = [zeros(size(right));right]; 
cam_1 = webcam('Stereo Vision 1'); 
talk_left = 0; 
talk_right = 0; 
for k=1:inf; 
    posk = 1; 
    negk = 1; 
    pause(.01); 
    cla;  
    x1_coord = (length(ans)/4); 
    x2_coord = (length(ans)/4*3); 
    y_coord = 411; 
    cropped = ans(y_coord:end,x1_coord:x2_coord,:); 
    crop_gr = (rgb2gray(cropped)); 
    I = imgaussfilt(crop_gr, 7); 
    BW = edge(I,'canny',[.108 .275]); 
    [H,T,R] = hough(BW,'Theta', -65:65); 
    P = houghpeaks(H,10,'threshold',ceil(0.3*max(H(:)))); 
    x = T(P(:,2));y = R(P(:,1)); 
    lines = houghlines(BW, T, R, P, 'FillGap', 1000, 'MinLength',100); 
    imshow(ans(y_coord:end,x1_coord:x2_coord,:)), hold on; 
    pos = 0; 
    neg = 0; 
    for k = 1:length(lines); 
        if pos == 0 & lines(k).theta > 0; 
            xyright = [lines(k).point1; lines(k).point2]; 
            plot1 = plot(xyright(:,1),xyright(:,2),'LineWidth',2,'Color','green'); 
            plot(xyright(1,1),xyright(1,2),'x','LineWidth',2, 'Color','yellow'); 
            plot(xyright(2,1),xyright(2,2),'x','LineWidth',2, 'Color','yellow'); 
            pos = 1; 
            posk = k; 
        end 
        if neg == 0 & lines(k).theta < 0; 
            xyleft = [lines(k).point1; lines(k).point2]; 
            plot2 = plot(xyleft(:,1),xyleft(:,2),'LineWidth',2,'Color','red'); 
            plot(xyleft(1,1),xyleft(1,2),'x','LineWidth',2, 'Color','yellow'); 
            plot(xyleft(2,1),xyleft(2,2),'x','LineWidth',2, 'Color','yellow'); 
            neg = 1; 
            negk = k; 
        end 
    end 
     
    rise1 = lines(posk).point2(2) - lines(posk).point1(2); 
    run1 = lines(posk).point2(1) - lines(posk).point1(1); 
    slope1 = rise1/run1; 
    rise2 = lines(negk).point2(2) - lines(negk).point1(2); 
    run2 = lines(negk).point2(1) - lines(negk).point1(1); 
    slope2 = rise2/run2; 
 
    if abs(slope1) > 1.5 
        if talk_right == 0 
            sound(out_left,Fs); 
            talk_right = 1; 
        end 
    else 
        talk_right = 0; 
    end 
    if abs(slope2) > 1.5 
        if talk_left == 0 
            sound(out_right,Fs); 
            talk_left = 1; 
        end 
    else 
        talk_left = 0; 
    end 
end 


