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1. Abstract  

This project seeks to develop a program which would aid in laboratory experiments requiring 
precise focusing of Gaussian Beams. In optics, many lasers emit profiles that are approximated 

by the Gaussian intensity distributions and thus serve as a reliable characterization of the 
electromagnetic radiation emitted by such lasers. Using Matrix Laboratory (MATLAB), we 
developed a program which simulates the propagation of a Gaussian beam through a given 
optical system. Given the input parameters of the Gaussian beam and the desired output 
parameters, the program automatically chooses what type of lens to use, where to place the 
lens in the system, determines the accuracy between the simulated and desired output beam 
and the stability of the given solution.  

2. Intro  

In the field of optics and laser related physics, Gaussian beams are a well-documented model 
of electromagnetic radiation whose characteristics of transverse electric field and intensity are 
approximated by Gaussian functions of the form:  

𝐸(𝑟, 𝑧) =
𝐸0𝑤0

𝑤(𝑧)
exp (−

𝑟2

𝑤2(𝑧)
− 𝑖𝑘𝑧 − 𝑖𝑘

𝑟2

2𝑇(𝑧)
+ 𝑖𝜁(𝑧))                                     𝐸𝑞. 1.0 

  
Where r is the radial distance from the center axis of the beam, z is the axial distance from the 
beam’s narrowest point, also termed waist, k is the wave number, E0 is the electric field at E(0,0), 
w(z) is the radius where the field amplitude and intensity drop to 1/e and 1/e2 of their axial 

values respectively, w0 is the waist size w(0), R(z) is the wave front radius of curvature, and ζ(z) 

is the Gouy phase shift which is an extra contribution to phase seen in Gaussian beams.  w(z) and 
R(z) are given by following equations:  

𝑤(𝑧) = 𝑤0√1 + (
𝑧

𝑧𝑅
)

2

                                    𝐸𝑞. 1.1 

𝑅(𝑧) = 𝑧 [1 + (
𝑧𝑅

𝑧
)

2

]                                     𝐸𝑞. 1.2 

 
 These quantities are more easily visualized in Figure 1.  
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Figure 1. General profile of a Gaussian beam.  

 
Where zR is the Rayleigh Length, defined as the distance along the propagation direction from 

w0 where the area of the beam cross section is doubled. As many lasers emit beams that follow 
this Gaussian profile. It becomes natural, then, for researchers to wish to produce a desired 
Gaussian beam that meets certain specifications, determined on a case by case basis of the 
experiment. For example, when one wishes to inject a given pump laser beam into another laser 
cavity, it is required that the input beams matches the cavity modes. In other words, one must 
mode-match the two beams such that the output parameters of the first beam matches the 
input parameters of the second beam. The simplest way in which we manipulate Gaussian 
beams is through the use of lenses; lenses transform an input Gaussian beam with certain 

parameters into another Gaussian beam which consists of different parameters. For our 
research, the main parameters of Gaussian beams which we focus on are the complex beam 
parameter, q(z), the beam’s waist, w(z), and its radius of curvature, R(z). It becomes 
advantageous to represent the complex beam parameter in terms of its reciprocal to show the 
relationship between parameters q(z), w(z) and R(z), given as:  

1

𝑞(𝑧)
=

1

𝑅(𝑧)
−

𝑖𝜆

𝜋𝑤2(𝑧)
                                     𝐸𝑞. 1.3  

  
Where  is the wavelength of the beam.  
 
The complex beam parameter readily contains information on both the radius of curvature and 

waist of a Gaussian beam at any position of its propagation. Thus, the complex beam parameter 

becomes essential to the simulation of Gaussian beam propagation.   
3. Ray Transfer Matrix Analysis  

The ABCD transfer matrix is a matrix which characterizes optical elements, such as lenses or 
free space, with a matrix of the form:  

(
𝐴 𝐵
𝐶 𝐷

) 

  

When determining the optical elements’ effects on, say a laser, we consider two reference planes: 
the input and output planes. Using this expression:  

(
𝑥2

𝜃2
) =  (

𝐴 𝐵
𝐶 𝐷

) (
𝑥1

𝜃1
)                                      𝐸𝑞. 2.0 

 

We consider the ray, or beam, entering the input plane a distance x1 from the optical axis (which 

is taken to coincide with the z-axis) at an angle of 𝜃1. As the beam travels it eventually crosses 
the output plane this time with characteristics x2 and 𝜃2. An example of this can be seen through 
the propagation of a beam through free space. The ray transfer matrix of free space is given by:  

𝑆 = (
1 𝑑
0 1

) 
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Where d is the distance traveled along the optical axis. Using the expression given previously, we 
get:  

(
𝑥2

𝜃2
) =  (

1 𝑑
0 1

) (
𝑥1

𝜃1
)                                      𝐸𝑞. 2.1 

 

Which we can then use to relate the parameters of the input and output rays visualized in Figure 
2:  

𝑥2 = 𝑥1 + 𝑑𝜃1  

𝜃2 = 𝜃1  

 
Figure 2. Free-space propagation example.  

Similarly we can go through the same geometric model using the ABCD matrix of a thin-lens  and 
free-space given as:  

𝑡ℎ𝑖𝑛 𝑙𝑒𝑛𝑠, 𝐿 = (

1 0

−
1

𝑓
1) 

𝑓𝑟𝑒𝑒 𝑠𝑝𝑎𝑐𝑒, 𝑆 = (
1 𝑑
0 1

) 

 
Where f is the focal length of the lens with positive values corresponding to convex or converging 
lenses and d is the distance of free space the beam travels. Similar to the geometric model we 
can apply this useful matrix formalism and apply it to describe Gaussian beams. Using the 
previously defined parameter q we apply the following equation:  

(
𝑞2

1
) = 𝑘 (

𝐴 𝐵
𝐶 𝐷

) (
𝑞1

1
) 

  

Where q1 and q2 are the input and output complex beam parameters respectively and k is the 

normalization constant chosen to ensure that the second component of the ray vector equals 

one. Upon expansion of the equation we receive:  

𝑞2 = (𝐴𝑞1 + 𝐵) 

1 = (𝐶𝑞1 + 𝐷) 

Dividing the first equation by the second to eliminate the normalization constant and taking the 
reciprocal we finally get the general form:  
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1

𝑞2
=

𝐶 +
𝐷
𝑞1

𝐴 +
𝐵
𝑞1

                                     𝐸𝑞. 2.2 

  

From which we may extract all relevant parameters of the resultant Gaussian beam given the ABCD 
matrix of the optical element.  We use the initial beam parameter, qi, and the ABCD transfer matrix 
of the optical system to then find the output beam, qf. 

4. Focusing of Spherical Gaussian Beams  

In the thin-lens approximation, diffraction on aperture is neglected and point objects, images 
and uniform spherical waves whose radii of curvature equal the distance from the point object 

or image are utilized. For a standard thin lens the relation between object, image and focal 
length of the lens geometrically are given by the equation:  

1

𝑠
+

1

𝑠′
=

1

𝑓
                                     𝐸𝑞. 3.0 

  

Where s is the object distance, s’ is the image distance and f is the focal length of the lens.  

  In general, the laser of a given output is a spherical Gaussian beam which has a waist where 

the wave front is planar and the beam’s diameter is at a minimum—otherwise known as the waist 
position. The beam radius w was given previously by Eq. 1.1 and nested within it is the Rayleigh 

range zR. 

The Rayleigh range can be further represented with the following equation:  

𝑧𝑅 = (
𝜋𝑤0

2

𝜆
)                                      𝐸𝑞. 3.1 

  

Where  is the wavelength of the given beam. From the Rayleigh range we can define two 
distances: near field and far field; where near field corresponds to z < zR and far field corresponds 
to z > zR. In regards to the beam’s radius of curvature we also previously defined it in Eq. 1.2. 
 

As one can see for the near field (z << zR), R tends to 𝑧𝑅2/ . If we take this value at the waist 
position (z = 0), R tends to positive infinity. In the far field approximation (z >> zR), R simply tends 
towards z and the wave approximates radiation from a point source centered about the waist.    

  Provided the input beam waist radius w0 and the object distance s, we are able to 
calculate the Rayleigh range (zR), beam radius (w), and beam radius of curvature (R). For thin 
lenses, the beam radius is unchanged by the lens, however the radius of curvature is changed 
by the amount (1/f) as in the geometrical case. Using this information we can now calculate the 
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output characteristics of a Gaussian beam as it passes through a thin lens. Applying the 
formulas above we arrive to:  

  

Reorganizing this equation as a function of s/f:  

  

Which is reminiscent of the usual lens formula:   

  

s’ and s in these equations for Gaussian beams now correspond to the final position of the beam 
waist and the initial position of the beam waist respectively. 

Using these formulas we are able to calculate the output image location and waist as the 
Gaussian beam passes through a thin lens. To apply this to a multi-lens optical system, one simply 
applies the formula in stages as it passes through each lens—the output parameters of the beam 
after the first lens become the input parameters for the second lens and so forth for each lens 
thereafter.  

5. The Process of Mode-Matching  

In order to properly mode-match there are certain considerations we must take into account. 
Firstly, the final beam output must match our desired output and the mode-matching algorithm 
must reflect that. Secondly, we must ensure that solutions we have are physically possible thus 
two extra conditions are required: lenses are within the system and they do not overlap. Thirdly, 
which has the least concern as it is a matter of convenience, we must ensure a collimated region 

between the 2nd and 3rd lens. Keeping this in mind we may then begin mode-matching. 
 
To begin the mode-matching process there are a number of factors we must input in order to 

run the program as coded which include the input parameters of the Gaussian beam, the length 
of the optical system desired, the final parameters desired and various aesthetic options editable 
by the user—for example, the self_flag variable determines the overall algorithm used when 
determining solution fitness; when set to 1 we use a method that is based off of Sidney A. Self’s 
“Focusing of spherical Gaussian beams” paper, otherwise it is set to 0 and we use our own 

algorithm. 
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Figure 1. Typical user settings for the program accompanied by comments explaining their 
usage.  

The first step the automation process we must consider is the lens set that it we are able to 
work with. In the laboratory setting, there is a limited subset of available lenses with given focal 
lengths, thus the ability to edit the program to the needs of the user is of utmost importance. 
The user must input all of the unique focal lengths of each lens available to them within the 
array lens_set. This array is then run through a separate function (pick.m) where all possible 
three lens permutations and combinations of the lens set are placed within the array 

lens_permutations—it is important to note the permutations included involve repeats of lenses 

as well (i.e. three of the same lens) and thus if this is undesired an additional look into pick.m 
documentation allows the user to change it as they see fit. After all possible combinations and 
permutations of the lenses are provided, the program then mode matches to retrieve solutions 
that cater to the desired final properties. The mode_match.m function places lenses into 
random positions and stores all possible solutions; these shuffles are done over the entire lens 
permutation array for a user-set variable (n_shuffles) number of times for each set of three 
lenses. Although certain lens positions are truly chosen at random, not all positions are chosen 
at random. The third lens, for example, is always placed to transfer a collimated region to a 

focused spot (which typically occurs at a distance of the lens focal length from the optical 
system’s final position). The other two positions for the lenses are then chosen at random, 

ensuring that the lens position always preserve order and checking whether the two random 
positions chosen are too close to each other (making sure it is larger than a threshold quantity 
set by lens_width)—in the case that the two positions are too close to each other, the program 
simply runs the random placement again until they are sufficiently far enough apart. At the end 
of this process, we have an initial random placement of lenses which we then send to our 
fitness function which minimizes “Energy” for given solutions.   

Two stages are performed to calculate the energy of a given lens set: a preliminary check and 

a deep optimization. The preliminary check uses MATLAB’s built-in fminsearch function to find 
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and minimize solutions with a max iteration value of 10. This serves as a rough overview of 
potential solutions for a given initial random placement of lenses. However, this approximation is 

too unrefined as the tolerance for solutions is too rough and not enough iterations are run 
through in fminsearch to find a more exact solution. Optimal solutions are desirable as optical 
systems are very sensitive; differences on the order of centimeters or even microns can affect the 
overall beam profile. It is with this in mind that a deep optimization is then taken with these rough 
solutions in mind, using the same fminsearch with more iterations. From the positions found by 
the rough approximation, a second pass is done on these points using a max iteration value of 
100. In essence, the preliminary pass allows us to approximate where minima are likely to be 
around and the deep pass allows us to refine those positions to greater precision. A two pass 

approach has proven to lead to faster runtimes as opposed to one pass with high iteration values. 

Once the mode_match.m function has iterated through each possible lens set, solutions are 
outputted and the “energy” is sorted from lowest to highest within the array.  

The fitness function itself is the next function to consider as it determines how the 
fminsearch ranks energy for particular solutions. It is important to note that “energy” in this 
sense does not refer to the classical meaning of energy but is used as a colloquialism to easily 
refer to the optimization level of a solution. Lower energy solutions correspond to more 
optimized solutions and conversely higher energy solutions correspond to lesser optimized 
solutions. Within the fitness function there are two methods by which we determine whether a 

solution is sufficient and two fitness factors that are held constant between these two methods. 
The two factors which we hold constant are the checks which ensure that the lens positions are: 
between the beginning and end of the optical system as well as not placed too close together. 

To ensure that the lenses are within the optical system the distance of the first lens from the 
beginning and the third lens from the end of the optical system are calculated. Values which are 
small, implying that the lens is close to the ends, have higher values of penalty and are thus 
added to the overall energy of the solution (higher energies mean poorer solutions and lower 
energies mean better solutions). Taking a look at a particular visualization of a fitness function 

we can see these energy barriers quite plainly.  
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The x-axis is position of the first lens and the y-axis depicts the penalty attributed to that 

position. The effects of the various penalties can be seen within the plot; penalties associated  

with being within x0 (beginning of optical system) and xf (end of optical system) are seen in the 
peaks near the ends of the plot (which are highlighted by circles). Penalties associated with lens 

overlap are apparent in peaks ~.4m and ~.8m (which are highlighted by squares). 

  

The next factor, not placing the lenses too close to each other, is calculated by taking the 
difference between the positions of the lenses themselves. Lower values of difference 
correspond to lenses being closer together. Based on the user set width of the lenses, the closer 
that difference is to the lens width the worse of a solution it is, thus also corresponding to a 
higher energy solution.  
 

 Which brings us to the two methods by which mainly determine minimum solutions. The first 
method, using Sidney A. Self’s “Focusing of spherical Gaussian beams” equations, relies on 
ensuring that there is a collimated region between the second and third lens as well as 

matching the waist at the end with the desired waist input by the user. Self’s equations allow 
for us to calculate the resultant image and position of the image from a given input Gaussian 
beam as it passes through a thin lens. Using this output, we then use it as an input for the 
second lens whose output is then used as an input for the third lens, finally culminating to a 
final waist position and radius. A collimated region between the second and third lens is highly 
desirable—collimated regions mean that the third lens is not sensitive to placement as the 

Figur e 2 . Fitness function for optical system where  x_lens_two = .403m, x_lens_three = .803m.  
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waist of the beam diverges very slowly when properly collimated. This is widely applicable to 
lab setups where inaccuracies in position are bound to occur due to limitations in ability to 

place lenses with the precision of micrometers. To create this collimated region the first image 
resulting from the second lens, should be sufficiently far away from the third lens in either the 
positive or negative direction. At large distances, a collimated region is created as it passes 
through the lens. The closer the resultant image from the third lens is to the second lens the 
higher energy is attributed to the solution and thus added to the overall energy of the solution. 
Next we compare the final waist resulting from the third lens to the desired waist supplied by 
the user at the beginning of the program. A difference is taken between the two and is added 
respectively to the overall energy of the solution based on how close or far apart the two values 

are (closer values corresponding to lower energies).  

  The second method of choice utilizes Professor Mikhailov’s Gaussian beam propagation 
code. In a similar fashion, a collimated region is desired in this method though how it is 
calculated and added to the fitness differs greatly from the Self-based method. To check for 
collimation, a linearly spaced array is created within the optical system. At each point in this 
array, we calculate (using gbeam_propagation.m) the q values associated with the point in the 
beams propagation. Doing complete propagations of both forward and backward simulations, 
we then examine the q values. We specifically looked at the intermediate q values between the 
second and third lens. If the standard deviation of these q values were high then we added a 

higher energy, as this means that the beam is diverging instead of being properly collimated. 
Smaller values of standard deviation meant that the beam diverged or converged slowly which is 
exactly what collimation requires. In addition to using this check for collimation, we also 

checked whether the forward and backward propagations of the beam aligned properly. 
Qualitative analysis of the plot allows judgment of whether a beam is mode-matched or not; 
forward and backward propagations of the beam with the same parameters and optical system 
should ideally yield identical beams. If the forward and backward propagation do not match 
then the sensitivity of the q parameter to small deviations is apparent. However, if they do 

match then we do know that it is solution that won’t deviate from the current solution if we 
perturb the position of the lenses. Figure 3 shows an example of a poorly mode matched 
solution.  
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Figure 3. A poorly mode-matched beam solution. As seen qualitatively, the forward and 

backward propagation of the beam do not coincide at all. The x-axis is the propagation direction 
of the beam and the y-axis is the waist distance from the optical axis.  

  

Once everything has been properly minimized the final potential solutions are outputted in a single 
array.  
  The next step in the program to consider is the outputted solutions themselves. As 

stated earlier, solutions are sensitive on orders of micrometers and thus a great number of 
similar solutions may appear within all possible solutions. It is important then, for the sake of 
the user, to find a way to consolidate solutions to only those which differ enough to truly be 
considered a separate solution. The user sets, as in figure 1, an n_truncate value whose value 
determines how many decimal places to consider to determine solution similarity— 

determining whether the placement of lenses between solutions are too similar or not. For 
example, a value of n_truncate = 3 would yield an edited solution array whose values are 

truncated to the 3rd decimal place. After determining the desired tolerance, the solution array is 
rounded to that particular decimal place and the MATLAB built-in function unique is used to 
output an array of solutions that are unique by decimal standards. For example, in the solution 
array:  

[
. 1234 . 2222 . 3333
. 1233 . 2222 . 3333
. 2222 . 3345 . 5555

] 

  

Where elements in the first column, second column and third column represent the placement of 
the first, second and third lens respectively. An n_truncate value of 3 would round values to the 
third decimal place to yield:  
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[
. 123 . 222 . 333
. 123 . 222 . 333
. 222 . 334 . 555

] 

As one can see, the first and second row solutions are exactly the same within this approximation. 
When run through MATLAB’s unique function we get the final output array:  

[
. 123 . 222 . 333
. 222 . 335 . 555

] 

  

or put simply, two unique solutions. In addition to outputting a unique solution array, another 
array is created to keep track of the indices corresponding to their row element position in the 
original array. For example, for the above two unique solution array, we obtain an index array of:  

[
1
3

] 

The first element, 1, corresponds to the fact that first row solution in the final output array 

corresponds to the first row solution of the original array. The second element, 3, corresponds to 
the fact that the second solution in the final output array corresponds to the third row solution 
of the original array. This is important for the visualization aspects of the Gaussian profile as a 
non-rounded value for lens position is more advantageous when simulating the beam—a more 
exact value for position creates a more accurate simulation of the beam’s interaction with the 
lens.  

  Which brings us to the simulation and profiling of the Gaussian beam as it passes 
through our calculated solutions. The propagation and plotting of the Gaussian beam is based 
on Professor Mikhailov’s original solution_visualization.m code; within it we take 1000 sample 

points linearly spaced across the optical system and calculate the q values for both the forward 
and backward propagation of the beam. The beam profile is then plotted using MATLAB’s builtin 
plot function. In addition to this, I’ve added the ability to plot the size of the lens itself, in 
relation to the entire optical system—allowing for the user to visually simulate how the 

program’s thin-lens approximation looks when we transpose actual lens width upon it. For even 
greater clarity, I included another line which represents the center of the lens and essentially a 
point-object lens as the thin-lens approximation requires. All of this is color coded to the legend, 
to avoid inconsistency and provide an easier read for the user. Outputted along with the graph is 

a title which includes all the necessary information to setup the situation in a laboratory setting. 

The solutions are numbered, the energy of the solution is listed, the positions and focal lengths 
of each individual lens is given and the final waist and radius of the solution is given. An example 
of what the solutions look like are given in Figure 4:   
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Figure 4. Three potential solutions for a lens set consisting only of .2030 and .0750 focal length 

lenses. The x-axis is the distance along the propagation axis and the y-axis is the radius of the 

beam. The collimated regions occur between the 2nd and 3rd lens and display as two parallel lines. 
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  The last and final step of the mode matching process is the stability calculation and 
visualization. Stability is a major factor in determining whether a solution is feasible or not; a 

solution which is too sensitive to perturbations is seldom useful as the precision required to place 
the lenses in that situation are outside the bounds of reality. So, a stability function is produced 
and calculated in order to better allow the user to choose which solution they would like to use 
for their laboratory. It is up to the user to decide whether to compromise energy for stability and 
vice versa, as every user has different needs from the program. The stability of a solution is 
calculated by randomly perturbing the lens positions and creating another fitness function out of 
these perturbations. Based on the user set amount (n_hist), the program will perturb it n_hist 
amount of times which is then stored in a histogram array. After storing histogram points, it is 

then visualized and plotted. The area under the histogram curve is calculated by the MATLAB 

built-in function trapz which is a trapezoidal numerical integration. The final output plot can be 
seen in the example in Figure 5.  

  

Figure 5. An example histogram showing solution stability. The number of test points and total 
area under the curve are given; this is outputted for each solution visualized.  

  

These plots are then subplotted beneath their corresponding solution in order to associate them 

more easily.  

  The final output solution looks something like Figure 6.  
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Figure 6. A desktop view of the MATLAB workspace with one solution being displayed.  

  

   

  

Additionally, each solution then has its energy graphed versus stability in order to compare the 
solutions together on one plot (as seen in figure 7).  
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Figure 7. Energy vs. Stability graph. Each solution is placed on this plot in order for the user to 
interpret the data more easily. As one can see, solution #1 has high value for instability  

but the lowest value for energy. Meanwhile, solution #3 has a low value for instability and the 
highest value for energy. A user must then decide which they favor more or caters to their 

experiment more—or even choosing a middle ground such as with solution #2.  

6. Conclusion  

In conclusion, the automated mode matching system functions and outputs solutions which 
are theoretically possible and analytically sound. The program runs for a total of 46.2 seconds on 

average for a two unique lens set and outputting 5 different solutions. Previously, mode-
matching was done manually. A general familiarity with lenses and optics allowed for 
experimental placement of lenses to make an educated guess towards what should give the 
output beam desired. However, we can automate this process to great efficiency and remove 
the need to manually mode-match. Practicality, efficiency and accuracy are what is most needed 
from this program and in that regard it does deliver. However, that is not to say the program is 

finished. The ability to incorporate not only thin lenses but other types of optical medium (such 
as thick lenses) would prove invaluable to laboratory settings and the ability to set the number 
of lenses or optical elements desired would be key to catering to equipment deficient projects.   
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