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                               The Method of Partial Fractions 
I. Introduction  
       Another integration technique is called the method of partial fractions.  This technique is used to 
find the antiderivatives for a certain class of functions, the rational functions.  Recall, a rational function 

is a function of the form ( ) ( )
( )xq
xpxf = where ( )xp  and ( )xq are polynomial functions.  For example: 
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 has a rational function for its integrand.  There is no obvious function whose 

derivative is this rational function.  If we can rewrite such a rational function as the sum of simpler 
rational functions that are easier to integrate, we have a method for evaluating the integral.  Simplifying 
a rational function to the sum of simpler rational functions is called partial fraction decomposition.   The 
general steps to evaluating these types of integrals are: 
1. Determine if the integrand is a proper rational function (deg ( )xp  < deg ( )xq ).  If it is not, use long 

division to rewrite the integrand as ( )
( ) ( ) ( )

( )xq
xrxQ

xq
xp

+=  where ( )xQ is a quotient and ( )xr  a remainder. 

2. Factor the denominator, ( )xq , of the proper rational function and determine the proper form to use for 
the partial fraction decomposition: 
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(b) If ( )xq  contains repeated linear factors use  ( )
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(c) If ( )xq contains irreducible quadratic factors use 
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(d) If ( )xq contains repeated quadratic factors use 
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Note: ( )xq  is likely to contain mixed factors that will require a combination of these forms. 

3. Equate the proper rational function ( )
( )xq
xp with the form obtained above.  Solve for the constants. 

4. Rewrite the integrand, ( )
( )xq
xp , in the decomposed form obtained and solve the integral. 
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Example 1: 

Evaluate ∫ −−
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1. Is degree ( )xp  < degree ( )xq  ?  (If not, use long division first.) 
 
2. Partial Fraction Decomposition: 
(a) Factor ( )xq . Based on the factors obtained, set up the needed form(s). 
(b) Multiply both sides by the least common denominator. 
(c) Simplify right side and collect coefficients of like terms. 
(d) Equate coefficients on left and right sides to form a system. 
(e) Solve the system for A, B, etc. 
 

3. Integrate the decomposed form of ( )
( )xq
xp . 
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Example 2: For each rational expression below, set up the proper form for partial fraction 
decomposition. DO NOT solve for the unknown constants. 

(a) 
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Example 3: Solve
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Math 112 S24 Lab 4 Exercises                 Name: ______________________________ Section: _____Score: ____  
 
You may use your textbook, lab and notes. Students may work cooperatively but must submit their own set of Lab 
Exercises. No calculators. 
 
A. For each rational function, perform steps 1, 2, and 3 to set up the partial fraction decomposition of the 
integrand. DO NOT solve for the unknown constants. 
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B. For each integral, perform steps 1-4 to evaluate.  Show all your work, identify substitutions. 
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Math 112 S24 Lab 4 Exercises (cont.)                                                 Name: ______________________________ 
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Math 112 S24 Lab 4 Exercises (cont.)                                                 Name: ______________________________ 
 

3.  
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