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Representing Functions as Power Series 
I.  Introduction 

In section 11.8 we learned the series  
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is called a power series.  It is a function of x whose domain is the set of all x for which it converges.   

In section 11.2 we learned the series 
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 is a geometric series that converges to the sum, 
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If we let 1=nc  in (1), the power series becomes the geometric series where a = 1 and xr = .  It 

follows, if 1<x , the power series converges to the sum, 
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1 .  Thus, we see a function that can 

be represented as a power series: 
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II. Creating Power Series Representations for Other Functions 

By manipulating the expressions in equation (3), we can represent other functions as powers series.  
This manipulation includes algebra, substitution, differentiation and integration.  The following three 
examples demonstrate how this works.  Simpler examples are in your textbook on pages 747-750. 
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Example 1:  Express ( )
32 2 +

=
x

xxf as a power series. 

At first glance, this shows no resemblance to the function in (3) but we use algebra to manipulate ( )xf

and create a substitution for x in the geometric series∑
∞

=0n

nx .  Generally, we want the form:
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and 3 from the denominator.  Then, replace x in equation (3) with 2
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The power series representation for ( )
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Rules for differentiation and integration of functions can be applied in power series problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.  Using the quotient rule for differentiation we see 
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We can also differentiate a power series term-by-term to obtain:           
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 B.  Using the indefinite integral ∫ += Cxdx
x

ln1 along with substitution we see 
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We can also integrate a power series term-by-term to obtain:    
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Example 2:  Find the power series representation for ( )
( )232 +

=
x

xxf . 

Notice the difference between this function and the one in Example 1.  The entire denominator is 
squared here which provides a “clue” as to what type of manipulation is needed.  The quotient rule for 
differentiation results in squaring the denominator so we know the function we must differentiate has 
(2x+3) in the denominator.  The x in the numerator can be factored out and “ignored” temporarily.  We 
see manipulating f(x) requires a little investigating but a good starting point is to differentiate 1/(2x+3):  
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Now that we know what the derivative looks like, we can write f(x) in terms of this derivative. 
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Why do we go through all these manipulations?  We can now create a power series for 1/(2x+3) and 

differentiate it to create another power series.  We then include the factor 
2
x

−   in the power series. 
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The power series representation for ( )
( )232 +

=
x
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n

n

n nx





−∑

∞

=

+

3
2

6
11

1

1 . 

 

 

There are a few important points worth noting. 

 

 

 

 

 

1. The derivative of a power series IS another power series!  The same is true for the integral of a 
power series. 

2.  The radius of convergence remains the same when a power series is differentiated or integrated 
but the interval of convergence might change. 
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Example 3:  Find the power series representation for ( ) ( )32ln += xxf . 

Once again, there is a connection between 1/(2x+3) and the given function.  Integration provides this 
connection so a good starting point in creating the power series for f(x) is to integrate 1/(2x+3). 
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Now that we see the integral only differs from f(x) by a factor of 1/2, we can write f(x) in terms of this 
integral. 
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We can now create a power series for 1/(2x+3) and integrate it to create the power series for f(x).   We 
then include the factor 2 in the power series.  
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The power series representation for ( ) ( )32ln += xxf is ( )
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III. Approximating a Function using a Power Series 

We learned in 11.3 that any partial sum ns  can approximate the sum of a convergent series.  How does 
this relate to our power series representations of a function?  Suppose we want to approximate the sum 

of the convergent geometric power series ...1 32
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Calculating 2s amounts to summing 

the first two terms in the series.  So, if we do not fix the value of x, the approximation of the sum is a 

linear equation in x.  That is x
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Below are the graphs of ( )
x

xf
−

=
1

1 and the linear approximation xxf += 1)( .  Notice, the line 

provides a good approximation of the function for values of x that are very close to x = 0. 

                                         

In Math 111, we learned a formula for the linear approximation of a function near a point x = a. 

 

 

Using our function ( )
x

xf
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1  and x = 0, we use this formula and get the same linear approximation 

we obtained from the power series.  This leads to a few questions. 

Question 1.  Since 3s provides a better approximation than 2s  for the sum of a convergent series, does 
adding another term in the power series also show a better approximation (graphically)? 

Adding the next term of the power series for an approximation yields 21
1

1 xx
x
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.  We can see 

this quadratic approximation is better. 

                                      

Given a function ( )xf , if ax ≈ then 
                                                                  ))(()()( axafafxf −′+≈                                             (4) 
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Question 2.  Is there a connection to the linear approximation formula in the box above and the power 
series representation of a function?  If so, does this connection extend to the quadratic approximation 
as well? 
The answer is “yes” and we will investigate. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Question 3.  Adding more terms to ns yields a better approximation of the sum; does adding more 

terms in the power series yield a better approximation to the function ( )xf ?  Does the general formula 
for the approximating polynomial continue to have a pattern? The answers are “yes” and “yes”. 

 

 

 

 

 

 

 

(COMPLETE THE EXERCISE PROBLEMS) 

The linear approximation formula x
x

+≈
−

1
1

1 , satisfies the following conditions: 

• Condition 1: At x = a = 0, ( )xf and the tangent line meet. 
• Condition 2: At x = a = 0, ( )xf and the tangent line have the same slope (i.e. their derivatives 

are equal at x = 0.) 

The general formula that satisfies these conditions (for a = 0) is ( ) ( )xffxf 0)0( ′+=                      (5) 

The quadratic approximation formula 21
1
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, satisfies the following conditions: 

• Condition 1: At x = a = 0, ( )xf and the tangent parabola meet. 
• Condition 2: At x = a = 0, ( )xf and the tangent parabola have the same slope (i.e. their 

derivatives are equal at x = 0.) 
• Condition 3: At x = a = 0, ( )xf and the tangent parabola have the same concavity (i.e. their 

second derivatives are equal at x = 0.) 

The general formula that satisfies these conditions (for a = 0) is ( ) ( ) ( ) 2

2
00)0( xfxffxf
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Each higher degree polynomial that approximates ( )xf  will satisfy the previous conditions analogous 
to the tangent line and the tangent parabola as well as:  

• The nth derivatives of ( )xf and the tangent nth degree polynomial are equal at x = 0. 
 

The general formula that satisfies these conditions (for a = 0) is 
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This series is called the Maclaurin Series.  Notice the formula allows us to find power series 
representations for other functions. 
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Math 112 S24 Lab 10 Exercises       Name: ________________________Section: ____Score: ____ 

You may use your textbook, lab and notes. Students may work cooperatively but must submit their 
own set of Lab Exercises. No calculators unless noted. 

1.  (a) In Example 2 why does the series beginning at n = 0 change to n = 1, as shown? 
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     (b) In Example 3 why does the series beginning at n = 0 change to n = 1, as shown? 

        ( )∑
∞

=

++

+






−

0

11

13
21

n

nn
n

n
x

= ( )
n
xnn

n

n 





−∑

∞

=

−

3
21

1

1  

 

      (c)  It is said (in class, in the textbook and in this lab) that ...1
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            seems to be a problem.  For example, if x = 2 we have ...8421
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2.  Find the power series representation for ( ) 29
xf x
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by first manipulating equation (3). 
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Math 112 S24 Lab 10 Exercises (cont.)                                 Name: __________________________ 

3.  Find the power series representation for ( )
( )29

xf x
x
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by first manipulating equation (3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.  Find the power series representation for ( ) 
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     begin by simplifying ( )xf using Laws of Logs then create two power series to combine. Your final 
     answer should be a single power series. 
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Math 112 S24 Lab 10 Exercises (cont.)                                 Name: __________________________ 

5.  (a) Complete the table then find the first four terms of the Maclaurin Series for ( ) 1
1 2

f x
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 using 

equation (7).  Simplify each table entry and each coefficient of the series. 
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     (b)  On the coordinate plane below, sketch the graphs of ( ) 1
1 2

f x
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 as well as the linear and 

           quadratic approximations of ( )xf at x = 0. (Use your graphing calculator.) 


