Precise Definition of a Limit

Prelab: Read definition 1 on page 83. Review Figures 3-6 on page 107. Read Example 2 on page 108 as well as the three paragraphs before this example.

In previous sections you were working with the "intuitive" definition of a limit. Using the "precise" definition, we can quantify how close x must be to a in order for $f(x)$ to be within some specified distance from L.

Precise Definition of a Limit: Let f be a function defined on some open interval that contains the number a, except possibly at a. We say that the limit of $f(x)$ as x approaches a is L, and we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

To understand the definition above, a visual approach can be helpful.
Example 1: The graph of $f(x)=x^{3}+1$ is shown.
(a) Illustrate the above definition as it applies to the limit equation, $\lim _{x \rightarrow 1} f(x)=2$.
(b) On the graph provided, label a, L, and ε, where $\varepsilon=0.5$.
(c) Calculate the value of δ (this requires a calculator). That is, determine how close to 1 we must take x in order for $f(x)$ to be within 0.5 of 2 .

The example above shows how the precise definition of a limit is used to find a specific δ, given a specific ε. One example is not enough to prove the limit written in l(a). The proof of this limit must hold for any ε. The proof involves two parts:
1.
2.

Example 2: (a) Prove $\lim _{x \rightarrow 4}(1-2 x)=-7$ using the ε, δ definition (precise definition) of a limit.
1.
2.
(b) Illustrate the precise definition and label a, L, ε, and δ.

Math 111 S 24 Lab 2 Exercises Name: \qquad Section: \qquad Score: \qquad
Work each problem showing all supporting work. You may use your textbook, lab and notes. Students may work cooperatively but each submits his/her own set of Lab Exercises.

1. (a) Use the graph below to estimate the following:
$\lim _{x \rightarrow 3} f(x)=$ \qquad
$\delta=$ when $\varepsilon=2$
(b) Label a, L, ε and δ on the graph as in Exercises 1 and 2.

2. (a) Complete the precise definition of a limit : We say $\lim _{x \rightarrow a} f(x)=L$, if for every $\varepsilon>0$ there exists a $\delta>0$ such that \qquad whenever \qquad .
(b)Prove $\lim _{x \rightarrow 3}(5-2 x)=-1$ using the ε, δ definition (precise definition) of a limit.
\qquad
3. (a) The formal limit definition, "for every $\varepsilon>0$, there exists a $\delta>0$ such that, $|\sqrt{13-x}-2|<\varepsilon$ whenever $|x-9|<\delta "$, defines the limit equation \qquad .
(b) Find δ, when $\varepsilon=1$. Show the steps of computation below.
(c) Illustrate the precise definition on the graph of $f(x)$ below and label the symbol and value for a, L, ε, and δ.

