DEPARTMENT OF CHEMISTRY
MS DEGREE PROGRAM

CURRENTLY SEEKING APPLICANTS FOR
FALL 2016 & SPRING 2017

PROGRAM STRUCTURE

- Base financial aid package: $20,000 + full tuition for applicants meeting faculty research needs
- Year-round hybrid Graduate Teaching and Research Assistantships
- MS degree candidates paired with committed faculty research advisor upon admission
- Flexible curriculum with option to take classes in a variety of science disciplines; Five academic classes (primarily undergrad/grad cross-listed) required for applicants with an undergraduate Chemistry major
- Typically less than 24 months to degree

OTHER PROGRAM HIGHLIGHTS

- Outstanding record of placing MS degree recipients in highly ranked PhD programs and industrial positions
- Excellent infrastructure for research, including a wide range of instrumentation
- Supplemental fellowships available for exceptional applicants
- Strong department research culture sustained by thirteen faculty with diverse interests

APPLICATION DEADLINES

February 15 to be considered for supplemental fellowships
April 1 for base financial aid package

www.wm.edu/as/chemistry
DIRECTOR OF GRADUATE STUDIES
PROFESSOR DEBORAH BEBOUT

chemgradprogram@wm.edu • 757-221-2558

TOP THREE REASONS TO PURSUE AN
MS CHEMISTRY DEGREE

EXCITING RESEARCH
Fourteen faculty programs across the subdisciplines of Chemistry

ADVANCE PROFESSIONALLY
Gain more insight into your long-term professional interests;
Enhance competitiveness for PhD programs and employment

GAIN INDEPENDENCE
Attractive hybrid TA/RA financial aid package
Faculty Research Interests

Christopher Abelt
Department Chair
Physical Organic
Fluorescent chemosensors of micro acidity and micropolarity.

Deborah Bebout
Director of Graduate Studies
Bioinorganic
In vitro approaches to understanding the biochemistry of Zn(II), Cd(II) & Hg(II).

Randolph Coleman
In silico Biochemistry
Computational studies of pathogenesis.

Elizabeth Harbron
Physical Organic
Photochromic conjugated polymer systems for fluorescence intensity modulation.

Robert Hinkle
Synthetic & Physical Organic
Catalytic use of Bi(III) compounds for the synthesis of ethers.

Nathan Kidwell
Physical
Photoinitiated chemical reactions in the atmosphere using laser-based methods; dynamics of gas phase species.

Lisa Landino
Biochemistry
Oxidative damage to proteins, and its role in neurodegeneration and aging.

William McNamara
Inorganic
Artificial photosynthesis; electrocatalysts for H+ reduction.

Tyler Meldrum
Physical
Observing physical changes in chemical systems with NMR.

Robert Pike
Inorganic & Crystallography
Metal-organic polymers; responsive materials; X-ray crystallography.

John Poutsma
Physical Analytical
Thermochemical properties of unusual organic and biological species; gas phase ion chemistry.

Jonathan Scheerer
Synthetic Organic
Synthesis & biosynthesis of biologically active polycyclic natural products.

Kristin Wustholz
Physical
Applications of laser spectroscopy to solar energy and art conservation.

Douglas Young
Bioorganic
New tools for molecular biology; microRNA therapeutics; new unnatural amino acids for addressing biological problems.

Updated December 2015